Bài giảng Đại số Lớp 8 - Tiết 17, Bài 12: Chia đa thức một biến đã sắp xếp

Bài giảng Đại số Lớp 8 - Tiết 17, Bài 12: Chia đa thức một biến đã sắp xếp

* HS1:

1. Phát biểu quy tắc chia một đa thức A cho một đơn thức B (trong trường hợp mỗi hạng tử của A đều chia hết cho B).

2. Làm tính chia:

 (3x2y2 + 6x2y3 - 12xy) : (-3xy)

3. Không thực hiện phép chia, hãy giải thích rõ vì sao đa thức A = 3x2y3 + 4 xy2 - 5x3y chia hết cho đơn thức B = 2xy.

1. Phép chia hết

Ví dụ 1: Thực hiện phép chia:

(2x4 - 13x3 + 15x2 + 11x - 3):(x2 - 4x - 3)

vậy:

2x4 - 13x3 + 15x2 + 11x – 3

= (x2 - 4x – 3).( )

Phép chia có dư

Ví dụ 3: Thực hiện phép chia:

 (5x3 - 3x2 + 7) : (x2 + 1)

VËy: 5x3 - 3x2 + 7

 = (x2 + 1)(5x - 3) - 5x + 10

Chú ý : Với hai đa thức tùy ý A, B của cùng một biến (B 0),

 tồn tại duy nhất cặp đa thức Q, R để : A = B.Q + R

 + Bậc của R nhỏ hơn bậc của B R được gọi là dư

 + R = 0 phép chia hết

 

ppt 14 trang thuongle 9180
Bạn đang xem tài liệu "Bài giảng Đại số Lớp 8 - Tiết 17, Bài 12: Chia đa thức một biến đã sắp xếp", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
KIEÅM TRA BAØI CŨ* HS dưới lớp làm tính: x2 - 4x - 3x2x2 - 5x + 196226* HS1: 1. Phát biểu quy tắc chia một đa thức A cho một đơn thức B (trong trường hợp mỗi hạng tử của A đều chia hết cho B).2. Làm tính chia: (3x2y2 + 6x2y3 - 12xy) : (-3xy)3. Không thực hiện phép chia, hãy giải thích rõ vì sao đa thức A = 3x2y3 + 4 xy2 - 5x3y chia hết cho đơn thức B = 2xy.a) b)KIEÅM TRA BAØI CŨa) Làm tính :+ x2 - 4x - 3x2x2 - 5x + 1Vậy: (x2 - 4x - 3).(2x2 - 5x + 1) = (2x4 - 13x3 + 15x2 + 11x - 3)b) Làm tính :9622678182 0-182-37Vậy : 962 : 26 = 37 hay 962 = 37. 262x4 - 13x3 + 15x2 + 11x - 3x2 - 4x - 32x22x4-8x3--6x2- 5x3+ 21x2+ 11x - 3 - 5x-- 5x3+ 20x2+15xx2- 4x- 3x2- 4x- 3-0+12x2 - 5x + 11. PhÐp chia hÕtTiÕt 17: chia ®a thøc mét biÕn ®· s¾p xÕpVÝ dô 1:Thùc hiÖn phÐp chia: (2x4 - 13x3 + 15x2 + 11x - 3):(x2 - 4x - 3)Dư thứ nhấtDư thứ haiDư cuối cùng2x4x2- 5x3x2VËy: (2x4 - 13x3 + 15x2 + 11x - 3): (x2 - 4x - 3) =?-Vậy (2x4 - 13x3 + 15x2 + 11x - 3): (x2 - 4x - 3) = 2x2 - 5x + 11. PhÐp chia hÕt?KiÓm tra l¹i tÝch (x2 - 4x - 3)(2x2 - 5x + 1) cã b»ng(2x4 - 13x3 + 15x2 + 11x - 3) hay kh«ng.Ta cã (x2 - 4x - 3)(2x2 - 5x + 1) = 2x4 - 13x3 + 15x2 + 11x - 3Tr¶ lêi:VÝ dô 1: Thùc hiÖn phÐp chia: (2x4 - 13x3 + 15x2 + 11x - 3):(x2 - 4x - 3)2x4 - 13x3 + 15x2 + 11x - 3x2 - 4x - 32x22x4-8x3-6x2- 5x3+ 21x2+ 11x - 3 - 5x-- 5x3+ 20x2+15xx2- 4x- 3x2- 4x- 3-0+1-Vậy : 2x4 - 13x3 + 15x2 + 11x – 3 = (x2 - 4x - 3).( 2x2 - 5x + 1)1. PhÐp chia hÕtVÝ dô 1: Thùc hiÖn phÐp chia: (2x4 - 13x3 + 15x2 + 11x - 3):(x2 - 4x - 3)2x4 - 13x3 + 15x2 + 11x - 3x2 - 4x - 32x22x4-8x3-6x2- 5x3+ 21x2+ 11x - 3 - 5x-- 5x3+ 20x2+15xx2- 4x- 3x2- 4x- 3-0+1VÝ dô 2: Thùc hiÖn phÐp chia: (3x4 - 8x3 - 10x2 + 8x - 5) : (3x2 - 2x + 1)VÝ dô 3: Thùc hiÖn phÐp chia: (5x3 - 3x2 + 7) : (x2 + 1)5x3 - 3x2 + 7 x2 + 12. PhÐp chia cã d­TiÕt 17: chia ®a thøc mét biÕn ®· s¾p xÕpVÝ dô 3: Thùc hiÖn phÐp chia: (5x3 - 3x2 + 7) : (x2 + 1)5x3 - 3x2 + 7 x2 + 1-5x+ 5x5x3- 3- 3x2- 5x+ 7- 3x2- 3- 5x+ 102. PhÐp chia cã d­§a thøc d­Ta viÕt5x3 - 3x2 + 7 = (x2 + 1)(5x - 3) + (-5x + 10)®a thøc bÞ chia ( A )®a thøc chia ( B )®a thøc th­¬ng( Q )®a thøc d­( R )-A = B.Q + RVÝ dô 4: Thùc hiÖn phÐp chia: (3x3 - 2x2 + 5) : (x2 - 1)1. PhÐp chia hÕt2. PhÐp chia cã d­VÝ dô 3: Thùc hiÖn phÐp chia: (5x3 - 3x2 + 7) : (x2 + 1)5x3 - 3x2 + 7 x2 + 1-5x+ 5x5x3- 3- 3x2- 5x+ 7- 3x2- 3- 5x+ 10--VÝ dô 1: Thùc hiÖn phÐp chia: (2x4 - 13x3 + 15x2 + 11x - 3):(x2 - 4x - 3)2x4 - 13x3 + 15x2 + 11x - 3x2 - 4x - 32x22x4-8x3-6x2- 5x3+ 21x2+ 11x - 3 - 5x-- 5x3+ 20x2+15xx2- 4x- 3x2- 4x- 3-0+1Chú ý : Với hai đa thức tùy ý A, B của cùng một biến (B 0), tồn tại duy nhất cặp đa thức Q, R để : A = B.Q + R + Bậc của R nhỏ hơn bậc của B R được gọi là dư + R = 0 phép chia hết VËy: 5x3 - 3x2 + 7 = (x2 + 1)(5x - 3) - 5x + 10- 5x+1 2x4 - 13x3 + 15x2 + 11x – 3 = (x2 - 4x – 3).( )2x2- 5x+1VËy:2. PhÐp chia cã d­VÝ dô 3: Thùc hiÖn phÐp chia: (5x3 - 3x2 + 7) : (x2 + 1)5x3 - 3x2 + 7 x2 + 1-5x+ 5x5x3- 3- 3x2- 5x+ 7- 3x2- 3- 5x+ 10-1. PhÐp chia hÕtTiÕt 1: chia ®a thøc mét biÕn ®· s¾p xÕp2. PhÐp chia cã d­VÝ dô 2: Thùc hiÖn phÐp chia: (5x3 - 3x2 + 7) : (x2 + 1)5x3 - 3x2 + 7 x2 + 1-5x+ 5x5x3- 3- 3x2- 5x+ 7- 3x2- 3- 5x+ 10--VÝ dô 1: Thùc hiÖn phÐp chia: (2x4 - 13x3 + 15x2 + 11x - 3):(x2 - 4x - 3)2x4 - 13x3 + 15x2 + 11x - 3x2 - 4x - 32x22x4-8x3-6x2- 5x3+ 21x2+ 11x - 3 - 5x-- 5x3+ 20x2+15xx2- 4x- 3x2- 4x- 3-0+1VËy: 5x3 - 3x2 + 7 = (x2 + 1)(5x - 3) - 5x + 10 2x4 - 13x3 + 15x2 + 11x – 3 = (x2 - 4x – 3).( )2x2- 5x+1VËy:1. PhÐp chia hÕtTiÕt 17: chia ®a thøc mét biÕn ®· s¾p xÕp2. PhÐp chia cã d­VÝ dô 2: Thùc hiÖn phÐp chia: (5x3 - 3x2 + 7) : (x2 + 1)5x3 - 3x2 + 7 x2 + 1-5x+ 5x5x3- 3- 3x2- 5x+ 7- 3x2- 3- 5x+ 10--VÝ dô 1: Thùc hiÖn phÐp chia: (2x4 - 13x3 + 15x2 + 11x - 3):(x2 - 4x - 3)2x4 - 13x3 + 15x2 + 11x - 3x2 - 4x - 32x22x4-8x3-6x2- 5x3+ 21x2+ 11x - 3 - 5x-- 5x3+ 20x2+15xx2- 4x- 3x2- 4x- 3-0+1VËy: 5x3 - 3x2 + 7 = (x2 + 1)(5x - 3) - 5x + 10 2x4 - 13x3 + 15x2 + 11x – 3 = (x2 - 4x – 3).( )2x2- 5x+1VËy:(12x2 + 8x3 + 6x + 1) cho đa thức (4x2 + 4x +1)Bài 1:Thực hiện phép chia đa thứcCó: 12x2 + 8x3 + 6x + 1 = 8x3 + 12x2 + 6x + 1 = (2x)3 + 3.(2x)2.1 + 3.2x.12 + 13 = (2x + 1)3 và 4x2 + 4x + 1 = (2x + 1)2= (2x + 1)3 : (2x + 1)2 = 2x + 1Vậy: (12x2 + 8x3 + 6x + 1):(4x2 + 4x +1)2x+21 C2x +12Rất tiếcBạn đã nhầm!ABDHoan hô!em đã đúngRất tiếcBạn đã nhầm!Rất tiếcem đã nhầm!TiÕt 17: chia ®a thøc mét biÕn ®· s¾p xÕp2. PhÐp chia cã d­Ta có: 4x2 + 4x + 2 = (4x2 + 4x + 1) +1 = ( 2x + 1 )2 + 1(12x2 + 8x3 + 6x + 1) cho đa thức (4x2 + 4x +1)Bài 1:Thực hiện phép chia đa thứcChú ý : Với hai đa thức tùy ý A, B của cùng một biến (B 0), tồn tại duy nhất cặp đa thức Q, R để : A = B.Q + R + Bậc của R nhỏ hơn bậc của B R được gọi là dư + R = 0 phép chia hết Bài 2: Khi thực hiện phép chia đa thức (4x2 + 4x +2) cho đa thức 2x + 1 thì dư trong phép chia bằng:h­íng dÉn vÒ nhµ Nắm vững “thuật toán” chia đa thức một biến đã sắp xếp. BTVN: 67; 68; 69 (SGK / 31) + 48 (SBT/13) Giờ sau: Luyện tập.Chóc ThÇy Gi¸o C« Gi¸o M¹nh KháeChóc C¸c Em Häc Giái

Tài liệu đính kèm:

  • pptbai_giang_dai_so_lop_8_tiet_17_bai_12_chia_da_thuc_mot_bien.ppt