Bài giảng Đại số Khối 8 - Tiết 45, Bài 4: Phương trình tích

Bài giảng Đại số Khối 8 - Tiết 45, Bài 4: Phương trình tích

I.PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI

Phưuơng trỡnh tích có dạng:

A(x)B(x)= 0 (1)

Cách giải:

A(x) B(x) = 0 ? A(x) = 0 hoặc B(x) = 0

Giải A(x) = 0 (2) và B(x) = 0 (3)

Kết luận: Nghiệm của phưuơng trỡnh (1) là tất cả các nghiệm của pt (2) và pt (3)

Lấy ví dụ về phương trình tích.

? Giải phương trình tích A(x)B(x) = 0 như thế nào.

A(x)B(x) = 0  A(x) = 0 hoặc B(x) = 0

Giải 2 pt: A(x) = 0 và B(x) = 0 rồi lấy tất cả các nghiệm của chúng.

Chú ý: Khi giải phương trình, sau khi biến đổi:

 Nếu số mũ của x là 1 thì đưa phương trình về dạng ax + b = 0

 - Nếu số mũ của x lớn hơn 1 thì đưa phương trình về dạng

pt tích để giải : A(x)B(x) = 0  A(x) = 0 hoặc B(x) = 0

 ( Nếu vế trái có nhiều hơn 2 nhân tử, cách giải tương tự )

 

ppt 14 trang thuongle 3290
Bạn đang xem tài liệu "Bài giảng Đại số Khối 8 - Tiết 45, Bài 4: Phương trình tích", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
KIỂM TRA BÀI CŨ1, Phân tích đa thức sau thành nhân tử:KIỂM TRA BÀI CŨ1, Phân tích đa thức sau thành nhân tử:2, Hãy nhớ lại một tính chất của phép nhân các số, phát biểu tiếp các khẳng định sau:- Trong một tích, nếu có một thừa số bằng 0 thì....................... Ngược lại, nếu tích bằng 0 thì ít nhất một trong các thừa số của tích......................tích bằng 0.phải bằng 0.a.b = 0 a = 0 hoặc b = 0 (a và b là hai số)Muốn giải phương trình P(x)=0, ta có thể lợi dụng kết quả phân tích P(x) thành tích (x+1)(2x-3) được không, và lợi dụng như thế nào? Phương trình (2) là một phương trình tích.Nếu P(x) = 0, ta có:I.PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:Tiết 45 – PHƯƠNG TRÌNH TÍCHa.b = 0 a = 0 hoặc b = 0VD1: Giải phương trình: (2x – 3)(x + 1) = 0 Trong bài này, ta chỉ xét các pt mà 2 vế là 2 biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu.Phương trình như VD 1 được gọi là phương trình tíchTa có( 2x – 3 )( x +1) = 0 2x – 3 = 0 hoặc x + 1 = 01) 2x – 3 = 02) x + 1 = 0Vậy tập nghiệm của phương trình là: S = { 1,5; -1 } 2x = 3 x = 1,5 x = - 1I.PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:Tiết 45 – PHƯƠNG TRÌNH TÍCH? Em hiểu thế nào là một phương trình tích?VD1: Giải phương trình: (2x – 3)(x + 1) = 0 Ta có( 2x – 3 )( x +1) = 0 2x – 3 = 0 hoặc x + 1 = 01) 2x – 3 = 02) x + 1 = 0Vậy tập nghiệm của phương trình là: S = { 1,5; -1 } 2x = 3 x = 1,5 x = - 1? Lấy ví dụ về phương trình tích.+ C¸ch gi¶i:A(x) B(x) = 0 A(x) = 0 hoÆc B(x) = 0Gi¶i A(x) = 0 (2) và B(x) = 0 (3) KÕt luËn: NghiÖm cña ph­ư¬ng trình (1) lµ tÊt c¶ c¸c nghiÖm cña pt (2) và pt (3) + Ph­ư¬ng trình tÝch cã d¹ng:A(x)B(x)= 0 (1)? Giải phương trình tích A(x)B(x) = 0 như thế nào.A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0Giải 2 pt: A(x) = 0 và B(x) = 0 rồi lấy tất cả các nghiệm của chúng.*Phương trình như VD1 là phương trình tíchI.PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:Tiết 45 – PHƯƠNG TRÌNH TÍCH+ C¸ch gi¶i:A(x) B(x) = 0 A(x) = 0 hoÆc B(x) = 0Gi¶i A(x) = 0 (2) và B(x) = 0 (3) KÕt luËn: NghiÖm cña phư­¬ng trình (1) lµ tÊt c¶ c¸c nghiÖm cña pt (2) và pt (3) + Phư­¬ng trình tÝch cã d¹ng:A(x)B(x)= 0 (1)? Giải pt tích như thế nào. A(x)B(x)C(x) = 0 A(x) = 0 hoặc B(x) = 0 hoặc C(x)=0 Giải 3 pt: A(x) = 0 , B(x) = 0 và C(x)=0 rồi lấy tất cả các nghiệm của chúngI.PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:Tiết 45 – PHƯƠNG TRÌNH TÍCH+ C¸ch gi¶i:A(x) B(x) = 0 A(x) = 0 hoÆc B(x) = 0Gi¶i A(x) = 0 (2) và B(x) = 0 (3) KÕt luËn: NghiÖm cña phư­¬ng trình (1) lµ tÊt c¶ c¸c nghiÖm cña pt (2) và pt (3) + Phư­¬ng trình tÝch cã d¹ng:A(x)B(x)= 0 (1)(x + 1)( x + 4) = ( 2 - x)( 2 + x)II.ÁP DỤNG:VD2: Giải phương trình(x + 1)( x + 4) = (2 - x)( 2 + x)( Ta chuyển vế đưa pt về dạng tổng quát : A(x)B(x) = 0 )I.PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:Tiết 45 – PHƯƠNG TRÌNH TÍCHA(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0II.ÁP DỤNG: Ví dụ 2 : giải phương trình : (x + 1)( x + 4) = ( 2 - x)( 2 + x) x2 + 4x + x + 4 - 4 + x2 = 0 2x2 + 5x = 0 x( 2x + 5) = 0 x = 0 hoặc 2x + 5 = 0 1) x = 02) 2x + 5 = 0 x = - 2,5Phương trình có tập nghiệm S = { 0; - 2,5 } (x+1)(x+4) – (2-x)(2+x) = 0 ? Hãy nêu các bước giải pt ở VD 2 ?( Đưa pt đã cho về dạng pt tích.)( Giải pt tích rồi kết luận.)B1: Đưa pt đã cho về dạng pt tíchChuyển tất cả các hạng tử sang vế trái (vế phải = 0), rút gọn rồi phân tích đa thức thu được ở vế trái thành nhân tửB2: Giải pt tích rồi kết luận*Nhận xét (sgk- 16)Ví dụ 3:*Nhận xét (sgk- 16) giải phương trình : 2x3 = x2 + 2x – 1 2x3 – x2 – 2x + 1 = 0 (2x3 – 2x) – (x2 – 1) = 0 2x(x2 – 1) – (x2 – 1 = 0 (x2 – 1)(2x – 1) = 0 (x + 1)(x – 1)(2x – 1) = 0 x + 1 = 0 hoặc x – 1 = 0 hoặc 2x –1= 0 1) x + 1 = 0 x = -1; 2) x – 1 = 0 x = 1 3) 2x – 1 = 0 x = 0,5 Vậy S = {-1; 1 ; 0,5} Giải:Tiết 45 – PHƯƠNG TRÌNH TÍCHI.PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0II.ÁP DỤNG:( Đưa pt đã cho về dạng pt tích.)( Giải pt tích rồi kết luận.)? Hãy nêu các bước giải pt ở VD3?Nếu vế trái của phương trình là tích của nhiều hơn hai nhân tử, ta cũng giải tương tự, cho lần lượt từng nhân tử bằng 0, rồi lấy tất cả các nghiệm của chúng. - Vấn đề chủ yếu trong cách giải pt theo phương pháp này là việc phân tích đa thức thành nhân tử. Bởi vậy, trong khi biến đổi pt , các em cần chú ý phát hiện các nhân tử chung, các HĐT sẵn có để biến đổi cho nhanh, gọn, chính xác.*Nhận xét (sgk- 16) ?3 Giải phương trình :?4 Giải phương trình :( x3 + x2) +( x2 + x ) = 0 x2 ( x + 1) + x ( x + 1) = 0 ( x + 1)( x2 + x) = 0 x( x + 1)2 = 0 ( x + 1)( x + 1) x = 0Vậy : S = { 0; -1 }1) x = 0 x = 0 hoÆc2) x + 1 = 0 x = -1 Ta có ( x3 + x2) +( x2 + x ) = 0 (x-1)( x2 + 3x - 2) - (x-1)(x2 + x +1) = 0 ( x - 1 )( x2 + 3x - 2- x2 – x - 1) = 0 ( x – 1 )( 2x – 3 ) = 0 x - 1 = 0 hoÆc 2x - 3 = 0Vậy : S = { 1; 1,5 }1) x - 1 = 0 x = 12) 2x - 3 = 0 2x = 3 x= 1,5Ta cóTiết 45 – PHƯƠNG TRÌNH TÍCHI.PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0II.ÁP DỤNG:*VD3: (Sgk)Chú ý: Khi giải phương trình, sau khi biến đổi: Nếu số mũ của x là 1 thì đưa phương trình về dạng ax + b = 0 - Nếu số mũ của x lớn hơn 1 thì đưa phương trình về dạng pt tích để giải : A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0 ( Nếu vế trái có nhiều hơn 2 nhân tử, cách giải tương tự )*Nhận xét (sgk- 16) Tiết 45 – PHƯƠNG TRÌNH TÍCHI.PHƯƠNG TRÌNH TÍCH VÀ CÁCH GIẢI:A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0II.ÁP DỤNG:*VD3: (Sgk)?3?4III. LUYỆN TẬP:Bài 22/Sgk: Bằng cách phân tích vế trái thành nhân tử, giải phương trình sau: a, 2x(x-3)+5(x-3) = 0Bài 23/Sgk: Giải phương trìnha, x(2x-9)=3x(x-5) (x-3)(2x+5) = 0 x-3 = 0 hoặc 2x+5 = 0 x= 3 hoặc x = - 2,5Vậy: S = { 3; -2,5 } x(2x-9) – 3x(x-5) = 0 x = 0 hoặc 6-x = 0 x= 0 hoặc x = 6Vậy: S = { 0; 6 }HƯỚNG DẪN VỀ NHÀ:-Học kỹ bài ,nhận dạng được phương trình tích và cách giải phương trình tích.-Làm bài tập 21,22 ( các ý còn lại – SGK )-Làm bài tập 26,27,28/SBT/7-Ôn lại phương pháp phân tích đa thức thành nhân tử và các hằng đẳng thức đáng nhớ.*Hướng dẫn: Bài 26. c,SBT/7Giê häc tíi ®©y lµ kÕt thócxin mêi c¸c thÇy c« vµ c¸c em nghØxin chµo vµ hÑn gÆp l¹i

Tài liệu đính kèm:

  • pptbai_giang_dai_so_khoi_8_tiet_45_bai_4_phuong_trinh_tich.ppt