Các chuyên đề ôn thi học sinh giỏi môn Toán Lớp 8 - Chuyên đề 8: Các bài toán về định lí Ta-lét
Bài 2:
Cho ABC vuông tại A, Vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD, K là giao điểm của AC và BF. Chứng minh rằng:
a) AH = AK
b) AH2 = BH. CK
Giải
Đặt AB = c, AC = b.
BD // AC (cùng vuông góc với AB)
Bạn đang xem tài liệu "Các chuyên đề ôn thi học sinh giỏi môn Toán Lớp 8 - Chuyên đề 8: Các bài toán về định lí Ta-lét", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHUYÊN ĐỀ 8 - CÁC BÀI TOÁN VỀ ĐỊNH LÍ TA-LÉT A.Kiến thức: 1. Định lí Ta-lét: * Định lí Talét * Hệ quả: MN // BC B. Bài tập áp dụng: 1. Bài 1: Cho tứ giác ABCD, đường thẳng qua A song song với BC cắt BD ở E, đường thẳng qua B song song với AD cắt AC ở G a) chứng minh: EG // CD b) Giả sử AB // CD, chứng minh rằng AB2 = CD. EG Giải Gọi O là giao điểm của AC và BD a) Vì AE // BC (1) BG // AC (2) Nhân (1) với (2) vế theo vế ta có: EG // CD b) Khi AB // CD thì EG // AB // CD, BG // AD nên Bài 2: Cho ABC vuông tại A, Vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD, K là giao điểm của AC và BF. Chứng minh rằng: a) AH = AK b) AH2 = BH. CK Giải Đặt AB = c, AC = b. BD // AC (cùng vuông góc với AB) nên Hay (1) AB // CF (cùng vuông góc với AC) nên Hay (2) Từ (1) và (2) suy ra: AH = AK b) Từ và suy ra (Vì AH = AK) AH2 = BH . KC 3. Bài 3: Cho hình bình hành ABCD, đường thẳng a đi qua A lần lượt cắt BD, BC, DC theo thứ tự tại E, K, G. Chứng minh rằng: a) AE2 = EK. EG b) c) Khi đường thẳng a thay đổi vị trí nhưng vẫn qua A thì tích BK. DG có giá trị không đổi Giải a) Vì ABCD là hình bình hành và K BC nên AD // BK, theo hệ quả của định lí Ta-lét ta có: b) Ta có: ; nên (đpcm) c) Ta có: (1); (2) Nhân (1) với (2) vế theo vế ta có: không đổi (Vì a = AB; b = AD là độ dài hai cạnh của hình bình hành ABCD không đổi) 4. Bài 4: Cho tứ giác ABCD, các điểm E, F, G, H theo thứ tự chia trong các cạnh AB, BC, CD, DA theo tỉ số 1:2. Chứng minh rằng: a) EG = FH b) EG vuông góc với FH Giải Gọi M, N theo thứ tự là trung điểm của CF, DG Ta có CM = CF = BC EM // AC (1) T¬ng tù, ta cã: NF // BD (2) mµ AC = BD (3) Tõ (1), (2), (3) suy ra : EM = NF (a) T¬ng tù nh trªn ta cã: MG // BD, NH // AC vµ MG = NH = AC (b) MỈt kh¸c EM // AC; MG // BD Vµ AC BD EM MG (4) T¬ng tù, ta cã: (5) Tõ (4) vµ (5) suy ra (c) Tõ (a), (b), (c) suy ra EMG = FNH (c.g.c) EG = FH b) Gäi giao ®iĨm cđa EG vµ FH lµ O; cđa EM vµ FH lµ P; cđa EM vµ FN lµ Q th× mµ (®èi ®Ønh), (EMG = FNH) Suy ra EO OP EG FH 5. Bµi 5: Cho h×nh thang ABCD cã ®¸y nhá CD. Tõ D vÏ ®êng th¼ng song song víi BC, c¾t AC t¹i M vµ AB t¹i K, Tõ C vÏ ®êng th¼ng song song víi AD, c¾t AB t¹i F, qua F ta l¹i vÏ ®êng th¼ng song song víi AC, c¾t BC t¹i P. Chøng minh r»ng a) MP // AB b) Ba ®êng th¼ng MP, CF, DB ®ång quy Gi¶i a) EP // AC (1) AK // CD (2) c¸c tø gi¸c AFCD, DCBK la c¸c h×nh b×nh hµnh nªn AF = DC, FB = AK (3) KÕt hỵp (1), (2) vµ (3) ta cã MP // AB (§Þnh lÝ Ta-lÐt ®¶o) (4) b) Gäi I lµ giao ®iĨm cđa BD vµ CF, ta cã: = Mµ (Do FB // DC) IP // DC // AB (5) Tõ (4) vµ (5) suy ra : qua P cã hai ®êng th¼ng IP, PM cïng song song víi AB // DC nªn theo tiªn ®Ị ¥clÝt th× ba ®iĨm P, I, M th¼ng hang hay MP ®i qua giao ®iĨm cđa CF vµ DB hay ba ®êng th¼ng MP, CF, DB ®ång quy 6. Bµi 6: Cho ABC cã BC < BA. Qua C kỴ ®êng th¼ng vu«ng go¸c víi tia ph©n gi¸c BE cđa ; ®êng th¼ng nµy c¾t BE t¹i F vµ c¾t trung tuyÕn BD t¹i G. Chøng minh r»ng ®o¹n th¼ng EG bÞ ®o¹n th¼ng DF chia lµm hai phÇn b»ng nhau Gi¶i Gäi K lµ giao ®iĨm cđa CF vµ AB; M lµ giao ®iĨm cđa DF vµ BC KBC cã BF võa lµ ph©n gi¸c võa lµ ®êng cao nªn KBC c©n t¹i B BK = BC vµ FC = FK MỈt kh¸c D lµ trung ®iĨm AC nªn DF lµ ®êng trung b×nh cđa AKC DF // AK hay DM // AB Suy ra M lµ trung ®iĨm cđa BC DF = AK (DF lµ ®êng trung b×nh cđa AKC), ta cã ( do DF // BK) (1) Mỉt kh¸c (V× AD = DC) Hay (v× = : Do DF // AB) Suy ra (Do DF = AK) (2) Tõ (1) vµ (2) suy ra = EG // BC Gäi giao ®iĨm cđa EG vµ DF lµ O ta cã OG = OE Bµi tËp vỊ nhµ Bµi 1: Cho tø gi¸c ABCD, AC vµ BD c¾t nhau t¹i O. §êng th¼ng qua O vµ song song víi BC c¾t AB ë E; ®êng th¼ng song song víi CD qua O c¾t AD t¹i F a) Chøng minh FE // BD b) Tõ O kỴ c¸c ®êng th¼ng song song víi AB, AD c¾t BD, CD t¹i G vµ H. Chøng minh: CG. DH = BG. CH Bµi 2: Cho h×nh b×nh hµnh ABCD, ®iĨm M thuéc c¹nh BC, ®iĨm N thuéc tia ®èi cđa tia BC sao cho BN = CM; c¸c ®êng th¼ng DN, DM c¾t AB theo thø tù t¹i E, F. Chøng minh: a) AE2 = EB. FE b) EB =. EF
Tài liệu đính kèm:
- cac_chuyen_de_on_thi_hoc_sinh_gioi_mon_toan_lop_8_chuyen_de.docx