Đề thi tuyển sinh vào lớp 10 THPT môn Toán - Năm học 2013-2014 (Có đáp án)

Đề thi tuyển sinh vào lớp 10 THPT môn Toán - Năm học 2013-2014 (Có đáp án)

Bài 4. (4,0 điểm)

Cho đường tròn (O), đường thẳng d cắt (O) tại hai điểm C và D. Từ điểm M tuỳ ý trên d kẻ các tiếp tuyếnMA và MB với (O) (A và B là các tiếp điểm). Gọi I là trung điểm của CD.

a) Chứng minh tứ giác MAIB nội tiếp.

b) Các đường thẳng MO và AB cắt nhau tại H. Chứng minh H thuộc đường tròn ngoại tiếp COD.

c) Chứng minh rằng đương thẳng AB luôn đi qua một điểm cố định khi M thay đổi trên đường thẳng d.

d) Chứng minh

 

doc 5 trang Phương Dung 31/05/2022 4720
Bạn đang xem tài liệu "Đề thi tuyển sinh vào lớp 10 THPT môn Toán - Năm học 2013-2014 (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HÀ NAM
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC: 2013 – 2014
Môn: Toán (Chuyên Toán)
Thời gian làm bài: 150 phút (Không kể thời gian giao đề)
Bài 1. (2,0 điểm)
	Cho biểu thức M = 
Tìm điều kiện của a và b để M xác định và rút gọn M.
Tính giá trị của M khi a = , b = 
Bài 2. (2,0 điểm)
	Cho phương trình x3 – 5x2 + (2m + 5)x – 4m + 2 = 0, m là tham số.
Tìm điều kiện của m để phương trình có ba nghiệm phân biệt x1, x2, x3.
Tìm giá trị của m để x12 + x22 + x32 = 11.
Bài 3. (1,0 điểm)
	Cho số nguyên dương n và các số A = (A gồm 2n chữ số 4); B = (B gồm n chữ số 8). Chứng minh rằng A + 2B + 4 là số chính phương.
Bài 4. (4,0 điểm)
Cho đường tròn (O), đường thẳng d cắt (O) tại hai điểm C và D. Từ điểm M tuỳ ý trên d kẻ các tiếp tuyếnMA và MB với (O) (A và B là các tiếp điểm). Gọi I là trung điểm của CD.
Chứng minh tứ giác MAIB nội tiếp.
Các đường thẳng MO và AB cắt nhau tại H. Chứng minh H thuộc đường tròn ngoại tiếp COD.
Chứng minh rằng đương thẳng AB luôn đi qua một điểm cố định khi M thay đổi trên đường thẳng d.
Chứng minh 
Bài 5. (1,0 điểm)
	Cho ba số thực a, b, c > 0 thoả mãn a + b + c = 2013.
Chứng minh .
Dấu đẳng thức sảy ra khi nào?
HẾT
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HÀ NAM
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC: 2013 – 2014
Môn: Toán (Chuyên Toán)
HƯỚNG DẪN CHẤM
(Hướng dẫn này gồm 4 trang)
Câu
Nội dung
Điểm
Câu 1
(2,0 đ)
a) M = 
ĐK xác định của M: 
0,25
M = 
0,25
= 
0, 5
b) Ta có M = với a = , b = 
0,25
0,25
Vậy 
0,25
Từ đó M = 
0,25
Câu 2
(2,0 đ)
a) x3 – 5x2 + (2m + 5)x – 4m + 2 = 0 (1)
Nếu trừ 0,25 điểm 
0,25
Để (1) có ba nghiệm phân biệt thì pt (*) có hai nghiệm phân biệt khác 2
0,25
Điều kiện là 
0,5
b) Ta có ba nghiệm phân biệt của phương trình (1) là x1 = 2; x2; x3 trong đó x2; x3 là hai nghiệm phân biệt của pt (*) 
0,25
Khi đó x12 + x22 + x32 = 11 
0,25
áp dụng định lý Vi-ét đối với pt (*) ta có (0,25 đ)
Vậy (**) (thoả mãn ĐK)
Vậy m = 1 là giá trị cần tìm.
0,5
Câu 3
(1,0 đ)
Ta có 
0,25
=
0,25
=
0,25
Khi đó
=
Ta có điều phảI chứng minh.
0,25
Câu 4
(4,0 đ)
a) MA, MB là các iếp tuyến của (O)
0,25
I là trung điểm của CD 
0,25
A, I, B cùng thuộc đường tròn đường kính MO
0,25
 Tứ giác MAIB nội tiếp đường tròn đường kính MO.
b) MA = MB (tính chất hai tiếp tuyến cắt nhau)
OA = OB
 MO là đường trung trực của AB
 MO AB
 MH.MO = MB2 (hệ thức lượng trong tam giác vuông) (1)
0,25
sđ
 (2)
0,25
Từ (1) và (2) MH.MO = MC.MD
0,25
tứ giác CHOD nội tiếp
 H thuộc đường tròn ngoại tiếp COD.
0,25
c) Gọi Q là giao điểm của AB và OI
Hai tam giác vuông MIO và QHO có chung
0,25
 (R là bán kính (O) không đổi)
0,25
O, I cố định độ dài OI không đổi
 lại có Q thuộc tia OI cố định
 Q là điểm cố định đpcm.
0, 5
d) ( cân tại O)
= 
= (3)
0,25
 (4) (hai góc nội tiếp cùng chắn cung BC)
Từ (3) và (4) 
 (5)
0,25
 (chứng minh trên)
 (6)
0,25
Từ (5) và (6) 
0,25
Câu 5
(1,0 đ)
Ta có 2013a + bc=(a + b + c)a + bc =a2 + ab + ac + bc = a2 +bc + a(b + c)
Theo BĐT Cô-Si cho hai số dương ta có a2 + bc 2a. Từ đó
a2 + bc + a(b + c) 2a +a(b + c) = a(b + c + 2) = a()2
0,25
Vậy (1)
0,25
Chứng minh tương tự được
 (2) và (3)
Cộng từng vế của (1); (2); (3) ta được
0,25
Dờu “=” xảy ra 
0,25
**
HƯỚNG DẪN GIẢI CÂU 3,5 MÔN TOÁN CHUYÊN HÀ NAM
Câu 3: Từ giả thiết ta có 
Từ đó suy ra D=A+2B+4=+4
	 9D =
	9D=
 Suy ra đpcm.
Câu 5: Với gt đã cho ta có: 
(theo BĐT cosi 2a+b dấu = xảy ra khi a=b.
 Từ đó suy ra VT=1 (ĐPCM)
Dấu đẳng thức xảy ra khi a=b=c= 2013:3=671.

Tài liệu đính kèm:

  • docde_thi_tuyen_sinh_vao_lop_10_thpt_mon_toan_nam_hoc_2013_2014.doc