Giáo án phụ đạo môn Toán Lớp 8 - Năm học 2020-2021 - Đặng Thị Ngọc Huyền

Giáo án phụ đạo môn Toán Lớp 8 - Năm học 2020-2021 - Đặng Thị Ngọc Huyền

Bài 5: Chứng minh các đẳng thức sau:

a) a(b – c) – b(a + c) + c(a – b) = - 2bc

 VT = a(b – c) – b(a + c) + c(a – b) = ab – ac – ab – bc + ac – bc = - 2bc = VP

Vậy đẳng thức được chứng minh.

b) a(1 – b)+ a(a2 – 1) = a(a2 – b)

 VT = a – ab + a3 – a = a3 – ab = a(a2 – b)=VP. Vậy đẳng thức được chứng minh.

c) a(b – x) + x(a + b) = b(a + x)

 VT = ab – ax + ax + bx = ab + bx = b(a + x) = VPVậy đẳng thức được CM

*Nhận xét:

-Để chứng minh 1 đẳng thức ta có thể thực hiện việc biến đổi biểu thức ở vế này (thường là vế phức tạp hơn) của đẳng thức để được 1 biểu thức bằng biểu thức ở vế kia.

-Trong 1 số trường hợp , để chứng minh 1 đẳng thức ta có thể biến đổi đồng thời cả 2 vế của đẳng thức sao cho chúng cùng bằng 1 biểu thức thứ ba, hoặc cũng có thể lấy biểu thức vế trái trừ biểu thức vế phải và biến đổi có kết quả bằng 0 thì chứng tỏ đẳng thức đã cho được chứng minh.

 

doc 151 trang thucuc 4541
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án phụ đạo môn Toán Lớp 8 - Năm học 2020-2021 - Đặng Thị Ngọc Huyền", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn
Ngày dạy
Tuần
Tháng
Lớp
27/9/2018
1/10/2018
3/10/2018
5/10/2018
1
10
8B2
ÔN TẬP : PHÉP NHÂN ĐƠN THỨC - ĐA THỨC
PHÉP NHÂN ĐA THỨC VỚI ĐA THỨC
A.TÓM TẮT LÝ THUYẾT
 1.Quy tắc nhân đơn thức với đa thức:
Muốn nhân 1 đơn thức với 1 đa thức ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.
	A(B + C) = AB + AC
2.Quy tắc nhân đa thức với đa thức:
Muốn nhân một đa thức với 1 đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
	(A + B)(C + D) = AC + AD + BC + BD
B.VÍ DỤ:
*Ví dụ 1: Thực hiện phép nhân:
a) (- 2x)(x3 – 3x2 – x + 1) = - 2x4 + 3x3 + 2x2 – 2x
b) (- 10x3 + y - = 5x4y – 2xy2 + xyz
*Ví dụ 2: Tính giá trị của biểu thức: x(x – y) + y(x + y) tại x = - và y = 3 
Ta có: x(x – y) + y(x + y) = x2 – xy + xy + y2 = x2 + y2 
Khi x = - và y = 3, giá trị của biểu thức là: ( - )2 + 32 = 
*Chú ý 1: Trong các dạng bài tập như thế, việc thực hiện phép nhân và rút gọn rồi mới thay giá trị của biến vào sẽ làm cho việc tính toán giá trị biểu thức được dễ dàng và thường là nhanh hơn.
*Chú ý 2: HS thường mắc sai lầm khi trình bày như sau:
Ta có: x(x – y) + y(x + y) = x2 – xy + xy + y2 = (-)2 + 32 = 
Trình bày như thế không đúng, vì vế trái là một biểu thức, còn vế phải là giá trị của biểu thức tại một giá trị cụ thể của biến, hai bên không thể bằng nhau.
*Ví dụ 3: Tính C = (5x2y2)4 = 54 (x2)4 (y2)4 = 625x8y8
*Chú ý 3: Lũy thừa bậc n của một đơn thức là nhân đơn thức đó cho chính nó n lần. Để tính lũy thừa bậc n một đơn thức, ta chỉ cần:
- Tính lũy thừa bậc n của hệ số
- Nhân số mũ của mỗi chữ cho n.
*Ví dụ 4: Chứng tỏ rằng các đa thức sau không phụ thuộc vào biến:
a) x(2x + 1) – x2(x + 2) + (x3 – x + 3) 
Ta có: x(2x + 1) – x2(x + 2) + (x3 – x + 3) = 2x2 + x – x3 – 2x2 + x3 – x + 3 = 3
b) 4(x – 6) – x2(2 + 3x) + x(5x – 4) + 3x2(x – 1)
Ta có: 4(x – 6) – x2(2 + 3x) + x(5x – 4) + 3x2(x – 1)
 = 4x – 24 – 2x2 – 3x3 + 5x2 – 4x + 3x3 – 3x2 = - 24 
Kết quả là mọt hằng số, vậy các đa thức trên không phụ thuộc vào giá trị của x.
*Ví dụ 5: Tìm x, biết:
a) 5x(12x + 7) – 3x(20x – 5) = - 100
60x2 + 35x – 60x2 + 15x = -100
50x = -100
x = - 2
b) 0,6x(x – 0,5) – 0,3x(2x + 1,3) = 0,138
0,6x2 – 0,3x – 0,6x2 – 0,39x = 0,138
-0,69x = 0,138
x = 0,2
C.BÀI TẬP 
Bài 1: Thực hiện các phép tính sau:
1)3x(5x2 – 2x – 1) 
2) (x2 + 2xy - 3 ) . ( - xy )
3) x2y ( 2x2 - xy2 - 1 )
4) ( x – 7 )( x – 5 )
5) (x+y+z)(x-y+z)
6) (x-2)(x2+3x-1)
7) ( x- 1 )( x + 1)( x + 2 )
8) 3x2(2x3 – x + 5) 
9) (4xy + 3y – 5x)x2y 
10) (3x2y – 6xy + 9x)(- xy) 
11) - xz(- 9xy + 15yz) + 3x2 (2yz2 – yz) 
12) (x3 + 5x2 – 2x + 1)(x – 7) 
13) (2x2 – 3xy + y2)(x + y) 
14) (x – 2)(x2 – 5x + 1) – x(x2 + 11) 
15) [(x2 – 2xy + 2y2)(x + 2y) - (x2 + 4y2)(x – y)] 2xy 
Bµi 2.Rót gän råi tÝnh gi¸ trÞ cña biÓu thøc:
a) A=5x(4x2- 2x+1) – 2x(10x2 - 5x - 2) víi x= 15
b) B = 5x(x-4y) - 4y(y -5x) víi x= ; y=
c, P = 5x(x2- 3) + x2(7- 5x) - 7x2 tại x= -5
d, Q = x(x - y) + y(x - y) tại x= 1,5 và y = 10
Bµi 3. Chøng minh c¸c biÓu thøc sau cã gi¸ trÞ kh«ng phô thuéc vµo gi¸ trÞ cña biÕn sè:
a) (3x-5)(2x+11)-(2x+3)(3x+7)
b) (x-5)(2x+3) – 2x(x – 3) +x +7 
c) x(5x – 3) – x2(x – 1) + x(x2 – 6x) – 10 + 3x 
d) x(x2 + x +1) – x2(x + 1) – x + 5
Gi¶i.
a)(3x-5)(2x+11)-(2x+3)(3x+7)
 = 6x2 – 10x + 33x – 55 – 6x2 – 14x – 9x – 21 = -76
VËy biÓu thøc cã gi¸ trÞ kh«ng phô thuéc vµo gi¸ trÞ cña biÕn sè.
b) (x-5)(2x+3) – 2x(x – 3) +x +7 
 =2x2+3x-10x-15-2x2+6x+x+7=-8
VËy biÓu thøc cã gi¸ trÞ kh«ng phô thuéc vµo gi¸ trÞ cña biÕn sè.
Bài 4: Tìm x, biết: 
a)(x+1)(x+3)-x(x+2)=7
 x2+4x+3-x2-2x=7
 2x+3=7
 x=2
b) 2x(3x+5)-x(6x-1)=33
6x2+10x-6x2+x=33
 11x=33
 x=3
c) 6x(5x + 3) + 3x(1 – 10x) = 7 
30x2 + 18x + 3x – 30x2 = 7
21x = 7 
x = 
d) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
15x – 63x2 – 15 + 63x + 63x2 – 35x + 36x – 20 = 44
79x = 79 
x = 1 
e) (x + 1)(x + 2)(x + 5) – x2(x + 8) = 27 
(x2 + 3x + 2)(x + 5) – x3 – 8x2 = 27 
x3 + 5x2 + 3x2 + 15x + 2x + 10 – x3 – 8x2 = 27
17x + 10 = 27 
17x = 17 x = 1 
Bài 5: Chứng minh các đẳng thức sau:
a) a(b – c) – b(a + c) + c(a – b) = - 2bc
 VT = a(b – c) – b(a + c) + c(a – b) = ab – ac – ab – bc + ac – bc = - 2bc = VP
Vậy đẳng thức được chứng minh.
b) a(1 – b)+ a(a2 – 1) = a(a2 – b) 
 VT = a – ab + a3 – a = a3 – ab = a(a2 – b)=VP. Vậy đẳng thức được chứng minh.
c) a(b – x) + x(a + b) = b(a + x) 
 VT = ab – ax + ax + bx = ab + bx = b(a + x) = VPVậy đẳng thức được CM
*Nhận xét: 
-Để chứng minh 1 đẳng thức ta có thể thực hiện việc biến đổi biểu thức ở vế này (thường là vế phức tạp hơn) của đẳng thức để được 1 biểu thức bằng biểu thức ở vế kia.
-Trong 1 số trường hợp , để chứng minh 1 đẳng thức ta có thể biến đổi đồng thời cả 2 vế của đẳng thức sao cho chúng cùng bằng 1 biểu thức thứ ba, hoặc cũng có thể lấy biểu thức vế trái trừ biểu thức vế phải và biến đổi có kết quả bằng 0 thì chứng tỏ đẳng thức đã cho được chứng minh.
*Bài 6: Chứng minh các đẳng thức sau:
a) (a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc 
Ta có : VT = a3 + ab2 + ac2 – a2b – abc – a2c + a2b + b3 + bc2 – ab2 – b2c – abc + a2c + b2c + c3 – abc – bc2 – ac2 = a3 + b3 + c3 – 3abc = VP
Vậy đẳng thức được c/m.
b) (3a + 2b – 1)(a + 5) – 2b(a – 2) = (3a + 5)(a + 3) + 2(7b – 10)
Ta có: VT = 3a2 + 15a + 2ab + 10b – a – 5 – 2ab + 4b = 3a2 + 14a + 14b – 5 
VP = 3a2 + 9a + 5a + 15 + 14b – 20 = 3a2 + 14a + 14b – 5 
Do đó VT = VP nên đẳng thức được c/m.
Bài 7: Cho các đa thức: f(x) = 3x2 – x + 1 và g(x) = x – 1 
a)Tính f(x).g(x) 
b)Tìm x để f(x).g(x) + x2[1 – 3.g(x)] = 
Giải:
a) f(x).g(x) = (3x2 – x + 1)(x – 1) = 3x3 – 3x2 – x2 + x + x – 1 = 3x3 – 4x2 + 2x – 1 
b) Ta có: f(x).g(x) + x2[1 – 3.g(x)] = (3x3 – 4x2 + 2x – 1 ) + x2[1 – 3(x – 1)]
= 3x3 – 4x2 + 2x – 1 + x2(1 – 3x + 3) = 3x3 – 4x2 + 2x – 1 + x2 – 3x3 + 3x2 
= 2x – 1 . Do đó f(x).g(x) + x2[1 – 3.g(x)] = 
2x – 1 = 2x = 1 + 2x = x = 
Bµi 8.T×m 3 sè ch½n liªn tiÕp, biÕt r»ng tÝch cña hai sè ®Çu Ýt h¬n tÝch cña hai sè cuèi 32 ®¬n vÞ.
Gi¶i.
Gọi 3 sè ch½n liªn tiÕp lµ: x; x+2; x+4
 (x+2)(x+4) – x(x+2) = 32
 x2 + 6x + 8 – x2 – 2x =32
 4x = 32
 x = 8
VËy 3 sè cÇn t×m lµ : 8;10;12
Bµi 9.T×m 4 sè tù nhiªn liªn tiÕp, biÕt r»ng tÝch cña hai sè ®Çu Ýt h¬n tÝch cña hai sè cuèi 146 ®¬n vÞ.
Gi¶i. 
Gäi 4 sè cÇn t×m lµ : x , x+1, x+2 , x+3.
Ta cã : (x+3)(x+2)- x(x+1) = 146 
 x2+5x+6-x2-x=146
 4x+6 =146
 4x=140
 x=35
VËy 4 sè cÇn t×m lµ: 35; 36; 37; 38
Bµi 10
a) CMR víi mäi sè nguyªn n th× : (n2-3n +1)(n+2) –n3 +2
 chia hÕt cho 5.
b) CMR víi mäi sè nguyªn n th× : (6n + 1)(n+5) –(3n + 5)(2n – 10) chia hÕt cho 2.
§¸p ¸n: a) Rót gän BT ta ®­îc 5n2+5n chia hÕt cho 5
 b) Rót gän BT ta ®­îc 24n + 10 chia hÕt cho 2.
Bài 11: Nếu (-2 + x2) (-2 + x2) (-2 + x2) (-2 + x2) (-2 + x2) = 1 thì x bằng bao nhiêu?
Giải: 
(-2 + x2)5 = 1 
Một số mà có lũy thừa 5 bằng 1 thì số đó phải bằng 1
Do đó ta có: (-2 + x2) = 1 hay x2 = 3 
Vậy x = hoặc x = - 
*Bài 12: CMR
a) 817 – 279 – 913 chia hết cho 405 
Ta có: 817 – 279 – 913 = (34)7 – (33)9 – (32)13 = 328 – 327 – 326 = 326(9 – 3 – 1) 
= 326 . 5 = 34.5.322 = 405. 322 chia hết cho 405 
Hay 817 – 279 – 913 chia hết cho 405
b) 122n + 1 + 11n + 2 chia hết cho 133
Ta có: 122n + 1 + 11n + 2 = 122n . 12 + 11n . 112 = 12. 144n + 121. 11n 
= 12.144n – 12.11n + 12.11n + 121.11n 
= 12(144n – 11n) + 11n(12 + 121)
= 12.(144 – 11) .M + 133.11n trong đó M là 1 biểu thức.
Mỗi số hạng đều chia hết cho 133, nên 122n + 1 + 11n + 2 chia hết cho 133.
*Bài 13: Tính giá trị của biểu thức:
M = x10 – 25x9 + 25x8 – 25x7 + - 25x3 + 25x2 – 25x + 25 với x = 24
Giải:
Thay 25 = x + 1 ta được:
M = x10 - (x + 1)x9 + (x + 1)x8 – (x + 1)x7 + - (x + 1)x3 + (x + 1)x2 – (x + 1)x + 25
M = x10 – x10 – x9 + x9 + x8 – x8 – x7 + - x4 – x3 + x3 + x2 – x2 – x + 25
M = 25 – x 
Thay x = 24 ta được: 
M = 25 – 24 = 1
*Bài 14: Cho a + b + c = 2p. CMR 2bc + b2 + c2 – a2 = 4p(p – a) 
Xét VP = 4p(p – a) = 2p (2p – 2a) = (a + b + c) (a + b + c – 2a) = (a + b + c)(b + c – a ) 
= (ab + ac – a2 + b2 + bc – ab + bc + c2 – ac ) 
= b2 + c2 + 2bc – a2 = VT 
Vậy đẳng thức được c/m
*Bài 15: Cho x là số gồm 22 chữ số 1, y là số gồm 35 chữ số 1. CMR: 
xy – 2 chia hết cho 3
Giải: Vì x gồm 22 chữ số 1 nên x chia cho 3 dư 1, hay x có dạng: 
x = 3n + 1 (n Z)
Vì y gồm 35 chữ số 1 nên y chia cho 3 dư 2, hay y có dạng:
y = 3m + 2 (m Z) 
Khi đó xy – 2 = (3n + 1)(3m + 2) – 2 = 9n.m + 6n + 3m + 2 – 2 
= 3(3n.m + 2n + m) = 3k ; với k = 3n.m + 2n + m Z
Vậy xy – 2 chia hết cho 3.
*Bài 16: Cho các biểu thức: 
A = 5x + 2y ; 	B = 9x + 7y 
a)Rút gọn biểu thức 7A – 2B
b)CMR: Nếu các số nguyên x, y thỏa mãn 5x + 2y chia hết cho 17 thì 9x + 7y cũng chia hết cho 17.
Ngày soạn
Ngày dạy
Tuần
Tháng
Lớp
5/10/2018
8/10/2018
10/10/2018
12/10/2018
2
10
8B2
ÔN TÂP: HÌNH THANG CÂN
A.ÔN TẬP LÝ THUYẾT
- DÊu hiÖu nhËn biÕt h×nh thang: Tø gi¸c cã hai c¹nh ®èi song song lµ h×nh thang
- DÊu hiÖu nhËn biÕt h×nh thang c©n: 
+ H×nh thang cã hai gãc kÒ mét ®¸y b»ng nhau lµ h×nh thang c©n.
+ H×nh thang cã hai ®­êng chÐo b»ng nhau lµ h×nh thang c©n
B.BÀI TẬP
Bµi 1: Cho tam gi¸c ABC. Tõ ®iÓm O trong tam gi¸c ®ã kÎ ®­êng th¼ng song song víi BC c¾t c¹nh AB ë M , c¾t c¹nh AC ë N.
a)Tø gi¸c BMNC lµ h×nh g×? V× sao?
b)T×m ®iÒu kiÖn cña DABC ®Ó tø gi¸c BMNC lµ h×nh thang c©n?
c) T×m ®iÒu kiÖn cña DABC ®Ó tø gi¸c BMNC lµ h×nh thang vu«ng?
a/ Ta cã MN // BC nªn BMNC lµ h×nh thang.
b/ §Ó BMNC lµ h×nh thang c©n th× hai gãc ë ®¸y b»ng nhau, khi ®ã 
Hay c©n t¹i A.
c/ §Ó BMNC lµ h×nh thang vu«ng th× cã 1 gãc b»ng 900
khi ®ã 
hay vu«ng t¹i B hoÆc C.
Bµi 2: 
Cho h×nh thang c©n ABCD cã AB //CD
O lµ giao ®iÓm cña AC vµ BD. Chøng minh r»ng OA = OB, OC = OD.
Ta cã tam gi¸c v×:
AB Chung, AD= BC,
VËy 
Khi ®ã c©n
 OA = OB,
Mµ ta cã AC = BD nªn OC = OD.
Bµi 3: Cho tam gi¸c ABC c©n t¹i A. Trªn c¸c c¹nh AB, AC lÊy c¸c ®iÓm M, N sao cho BM = CN
Tø gi¸c BMNC lµ h×nh g× ? v× sao ?
TÝnh c¸c gãc cña tø gi¸c BMNC biÕt r»ng = 400
GV cho HS vÏ h×nh , ghi GT, KL
a) DABC c©n t¹i A Þ 
mµ AB = AC ; BM = CN Þ AM = AN
Þ DAMN c©n t¹i A
=> 
Suy ra do ®ã MN // BC
Tø gi¸c BMNC lµ h×nh thang, l¹i cã nªn lµ h×nh thang c©n
b) 
Bµi 4: Cho h×nh thang ABCD cã O lµ giao ®iÓm hai ®ưêng chÐo AC vµ BD. CMR: ABCD lµ h×nh thang c©n nÕu OA = OB
Gi¶i:
XÐt DAOB cã :
OA = OB(gt) (*) Þ DABC c©n t¹i O
 Þ A1 = B1 (1)
Mµ ; nA1=C1( So le trong) (2)
Tõ (1) vµ (2)=>D1=C1
=>D ODC c©n t¹i O => OD=OC(*’)
=> ABCD lµ h×nh thang c©n
Tõ (*) vµ (*’)=> AC=BD
Mµ ABCD lµ h×nh thang 
Bµi 5: (bµi 38 – SBT/T64). 
XÐt ABC cã:
EA=EB vµ DA=DB nªn ED lµ ®­êng trung b×nh 
 ED//BC vµ ED= BC 
T­¬ng tù ta cã IK lµ ®­êng trung b×nh cña BGC IK//BC vµ IK= BC
Tõ ED//BC vµ IK//BC ED//IK
Tõ ED= BC vµ IK= BC ED=IK
Bài 6: Cho tam giác ABC có BC = 8cm, các trung tuyến BD, CE. Gọi MN theo thứ tự là trung điểm của BE, CD. Gọi giao điểm của MN với BD, CE theo thứ tự là I, K.
a) Tính độ dài MN.
b) Chứng minh rằng MI = IK = KN.
Gợi ý: a) ED là đường trung bình của tam giác ABC. MN là đường trung bình của hình thang BEDC.
 b) Trong Δ BED thì MI có đặc điểm hay tính chất gì? Tương tự với ΔCED.
Bài 7
Cho tø gi¸c ABCD, , CB =CD. 
Trªn tia ®èi cña tia DA lÊy ®iÓm E sao cho DE = AB. Chøng minh:
a) ABC = EDC ; 
b) AC lµ ph©n gi¸c cña gãc A.
 Bài 8: Cho h×nh thang ABCD (AB//CD), E lµ trung ®iÓm cña AD, F lµ trung ®iÓm cña BC. §­êng th¼ng EF c¾t BD ë I, c¾t AC ë K.
a) C/m: EK = IF;
b) Ch AB = 6cm; CD = 9cm. TÝnh c¸c ®é dµiEI, KF, IK.
c) Cho . C/m DF lµ ph©n gi¸c cña gãc D.
Bµi 9:Cho h×nh thang c©n ABCD ( AB // CD vµ AB < CD) c¸c ®­êng th¼ng AD vµ BC c¾t nhau t¹i I.
a) Chøng minh tam gi¸c IAB lµ tam gi¸c c©n
b) Chøng minh rIBD = rIAC.
c) Gäi K lµ giao ®iÓm cña AC vµ BD. chøng minh rKAD = rKBC.
Bài 10. Cho h×nh thang ABCD cã gãc A vµ gãc D b»ng 900, AB = 11cm. AD = 12cm, BC = 13cm tÝnh ®é dµi AC .
Bài 11. H×nh thang ABCD (AB // CD) cã E lµ trung ®iÓm cña BC gãc AED b»ng 900 chøng minh r»ng DE lµ tia ph©n gi¸c cña gãc D . 
Bài 12. Mét h×nh thang c©n cã ®¸y lín dµi 2,7cm, c¹nh bªn dµi 1cm, gãc t¹o bëi ®¸y lín vµ c¹nh bªn cã sè ®o b»ng 600 . TÝnh ®é dµi cña ®¸y nhá.
Bài 13: Cho h×nh thang ABCD (AB//CD). Gäi E, F, I thø tù lµ trung ®iÓm cña AD, BC, AC. C/mr 3 ®iÓm E, F, I th¼ng hµng.
 Ngày tháng .năm 2018
 Ký duyệt
Ngày soạn
Ngày dạy
Tuần
Tháng
Lớp
12/10/2018
15/10/2018
17/10/2018
19/10/2018
3
10
8B2
ÔN TẬP : HẰNG ĐẲNG THỨC ĐÁNG NHỚ
A.TÓM TẮT LÝ THUYẾT
Cho A và B là các biểu thức. Ta có một số hằng đẳng thức đáng nhớ sau:
1) (A + B)2 = A2 + 2AB + B2 
2) (A – B)2 = A2 – 2AB + B2 
3) A2 – B2 = (A + B)(A – B) 
4) (A + B)3 = A3 + 3A2B + 3AB2 + B3 
5) (A - B)3 = A3 - 3A2B + 3AB2 - B3 
6) A3 + B3 = (A + B)(A2 – AB + B2)
7) A3 - B3 = (A - B)(A2 + AB + B2)
*Chú ý: 
Các công thức 4) và 5) còn được viết dưới dạng:
(A + B)3 = A3 + B3 + 3AB(A + B)
(A – B)3 = A3 – B3 – 3AB(A – B)
- Từ công thức 1) và 2) ta suy ra các công thức:
(A + B + C)2 = A2 + B2 + C2 + 2AB + 2BC + 2AC
(A – B + C)2 = A2 + B2 + C2 – 2AB – 2BC + 2AC
(A – B – C)2 = A2 + B2 + C2 – 2AB + 2BC – 2AC 
B.VÍ DỤ:
*Ví dụ 1: Khai triển:
a) (5x + 3yz)2 = 25x2 + 30xyz + 9y2z2 
b) (y2x – 3ab)2 = y4x2 – 6abxy2 + 9a2b2 
c) (x2 – 6z)(x2 + 6z) = x4 – 36z2 
d) (2x – 3)3 = (2x)3 – 3.(2x)2.3 + 3.2x.32 – 33 = 8x3 – 36x2 + 54x – 27 
e) (a + 2b)3 = a3 + 6a2b + 12ab2 + 8b3 
g) (x2 + 3)(x4 + 9 – 3x2) = (x2)3 + 33 = x6 + 27 
h) (y – 5)(25 + 2y + y2 + 3y) = (y – 5)(y2 + 5y + 25) = y3 – 53 = y3 – 125
*Ví dụ 2: Rút gọn biểu thức:
a) A = (x + y)2 – (x – y)2 
= x2 + 2xy + y2 – x2 + 2xy – y2 = 4xy 
Hoặc: A = (x + y + x – y)(x + y – x + y) = 2x.2y = 4xy
b) B = (x + y)2 – 2(x + y)(x – y) + (x – y)2 
= x2 + 2xy + y2 – 2x2 + 2y2 + x2 – 2xy + y2 = 4y2
c) C = (x + y)3 - (x – y)3 – 2y3 
= x3 + 3x2y + 3xy2 + y3 – x3 + 3x2y – 3xy2 + y3 – 2y3 
= 6x2y
*Ví dụ 3: Chứng minh: (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac 
Ta có: VT = (a + b + c)2 = [(a + b) + c]2 
=(a + b)2 + 2(a + b)c + c2 = a2 + 2ab + b2 + 2ac + 2bc + c2 = VP
Vậy đẳng thức được chứng minh.
*Ví dụ 4: Chứng minh:
a) a3 + b3 = (a + b)3 - 3ab(a + b) 
Ta có : VP = a3 + 3a2b + 3ab2 + b3 – 3a2b – 3ab2 = a3 + b3 = VT
Áp dụng: Tìm tổng lập phương của hai số biết rằng tích hai số đó bằng 6 và tổng hai số đó bằng – 5 
Gọi hai số đó là a và b thì ta có: 
a3 + b3 = (a + b)3 – 3ab(a + b) = (- 5)3 – 3.6 (- 5) = - 125 + 90 = -35
b) a3 – b3 = (a - b)3 + 3ab(a – b) 
Ta có: VP = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 = a3 – b3 
*Ví dụ 5: Tính nhanh:
a) 1532 + 94 .153 + 472 = 1532 + 2.47.153 + 472 = (153 + 47)2 = 2002 = 40000
b) 1262 – 152.126 + 5776 = 1262 – 2.126.76 + 762 = (126 – 76)2 = 502 = 2500
c) 38.58 – (154 – 1)(154 + 1) = 158 – (158 – 1) = 1
d) (2 + 1)(22 + 1)(24 + 1) (220 + 1) + 1 = 
= (2 – 1)(2 + 1) (22 + 1)(24 + 1) (220 + 1) + 1 = 
= (22 – 1) (22 + 1)(24 + 1) (220 + 1) + 1 = 
= (24 – 1)(24 + 1) (220 + 1) + 1 = 
= 
= (220 – 1)(220 + 1) + 1 = 240 – 1 + 1 = 240 
C.BÀI TẬP 
*Bài tập 1: Viết các biểu thức sau dưới dạng bình phương của một tổng hay một hiệu:
a) x2 + 5x + = x2 + 2.x + ()2 = (x + )2 
b) 16x2 – 8x + 1 = (4x)2 – 2.x.4 + 12 = (4x – 1)2 
c) 4x2 + 12xy + 9y2 = (2x)2 + 2.2x.3y + (3y)2 = (2x + 3y)2 
d) (x + 3)(x + 4)(x + 5)(x + 6) + 1 = (x + 3)(x + 6)(x + 4)(x + 5) + 1 
= (x2 + 6x + 3x + 18)(x2 + 4x + 5x + 20) + 1 
= (x2 + 9x + 18)(x2 + 9x + 18 + 2) + 1 
= (x2 + 9x + 18)2 + 2(x2 + 9x + 18).1 + 12 = (x2 + 9x + 18 + 1)2 = (x2 + 9x + 19)2 
e) x2 + y2 + 2x + 2y + 2(x + 1)(y + 1) + 2 
= x2 + y2 + 2x + 2y + 2xy + 2x + 2y + 2 + 2 
= x2 + y2 + 22 + 4x + 4y + 2xy = (x + y + 2)2 
g) x2 – 2x(y + 2) + y2 + 4y + 4 
= x2 – 2xy – 4x + y2 + 4y + 4 
= x2 + y2 + 22 – 2xy – 4x + 4y = (x – y – 2 )2 
h) x2 + 2x(y + 1) + y2 + 2y + 1 = x2 + 2x(y + 1) + (y + 1)2 
= (x + y + 1)2
*Bài tập 2: Viết các biểu thức sau dưới dạng lập phương của một tổng hay một hiệu:
a) x3 + 3x2 + 3x + 1 = (x + 1)3
b) 27y3 – 9y2 + y - = (3y)3 – 3.(3y)2. + 3.3y.( )2 – ()3 = (3y - )3 
c) 8x6 + 12x4y + 6x2y2 + y3 = (2x2)3 + 3.(2x2)2.y + 3.(2x2).y2 + y3 = (2x2 + y)3 
d) (x + y)3(x – y)3 = [(x + y)(x – y)]3 = (x2 – y2)3 
*Bài tập 3: Rút gọn biểu thức:
a) (2x + 3)2 – 2(2x + 3)(2x + 5) + (2x + 5)2 = (2x + 3 – 2x – 5)2 = (-2)2 = 4
b) (x2 + x + 1)(x2 – x + 1)(x2 – 1) = (x2 + 1 + x)(x2 + 1 – x)(x2 – 1) 
= [(x2 + 1)2 – x2] (x2 – 1) = (x2 – 1)(x2 + 1)2 – x2(x2 – 1) = (x4 – 1)(x2 + 1) – x4 + x2 
= x6 + x4 – x2 – 1 – x4 + x2 = x6 – 1 
c) (a + b – c)2 + (a – b + c)2 – 2(b – c)2 
= a2 + b2 + c2 + 2ab – 2bc – 2ac + a2 + b2 + c2 – 2ab – 2bc + 2ac – 2b2 + 4bc – 2c2 
= 2a2 
d) (a + b + c)2 + (a – b – c)2 + (b – c – a)2 + (c – a – b)2 
= a2 + b2 + c2 + 2ab + 2bc + 2ac + a2 + b2 + c2 – 2ab + 2bc – 2ac + b2 + c2 + a2 – 2bc + 2ac – 2ab + c2 + a2 + b2 – 2ac + 2ab – 2bc 
= 4a2 + 4b2 + 4c2 = 4(a2 + b2 + c2)
*Bài tập 4: Điền đơn thức thích hợp vào các dấu *
a) 8x3 + * + * + 27y3 = (* + *)3 
= (2x)3 + 3.(2x)2.3y + 3.2x.(3y)2 + (3y)3 = (2x + 3y)3 
= 8x3 + 36x2y + 54xy2 + 27y3 = (2x + 3y)3
b) 8x3 + 12x2y + * + * = (* + *)3 
= (2x)3 + 3.(2x)2.y + 3.2x.y2 + y3 = (2x + y)3 
= 8x3 + 12x2y + 6xy2 + y3 = (2x + y)3 
c) x3 - * + * - * = (* - 2y)3 
= x3 – 6x2y + 12xy2 – 8y3 = (x – 2y)3 
*Bài tập 5: CMR với mọi giá trị của biến x ta luôn có:
a) – x2 + 4x – 5 < 0 
Ta có: – x2 + 4x – 5 = - (x2 – 4x + 5) = - (x2 – 4x + 4 + 1) = - [(x – 2)2 + 1]
Mà (x – 2)2 ≥ 0 nên (x – 2)2 + 1 > 0 
Do đó – [(x – 2)2 + 1] < 0 với mọi giá trị của biến x
b) x4 + 3x2 + 3 > 0
Ta có: x4 ≥ 0 ; 3x2 ≥ 0 nên x4 + 3x2 + 3 > 0 , với mọi x
c) (x2 + 2x + 3)(x2 + 2x + 4) + 3 > 0
Ta có: (x2 + 2x + 3)(x2 + 2x + 4) + 3 = (x2 + 2x + 3)(x2 + 2x + 3 + 1) + 3 
= (x2 + 2x + 3)2 + (x2 + 2x + 3) + 1 + 2 = (x2 + 2x + 3)2 + (x2 + 2x + 1) + 5 
= (x2 + 2x + 3)2 + (x + 1)2 + 5 
Ta có: (x2 + 2x + 3)2 ≥ 0; (x + 1)2 ≥ 0 
nên (x2 + 2x + 3)2 + (x + 1)2 + 5 > 0 , với mọi x
*Bài tập 6: So sánh:
a) 2003.2005 và 20042 
Ta có: 2003.2005 = (2004 – 1)(2004 + 1) = 20042 – 1 < 20042
b) 716 – 1 và 8(78 + 1)(74 + 1)(72 + 1) 
Ta có: 716 – 1 = (78)2 – 1 = (78 + 1)(78 – 1) 
= (78 + 1)(74 + 1)(74 – 1) = (78 + 1)(74 + 1)(72 + 1)(72 – 1)
= (78 + 1)(74 + 1)(72 + 1)(7 + 1)(7 – 1) =
 =(78 + 1)(74 + 1)(72 + 1)8.6 > (78 + 1)(74 + 1)(72 + 1).8
*Bài tập 7: Cho a – b = m ; a.b = n .Tính theo m, n giá trị của các biểu thức sau:
a) (a + b)2 = (a 2 + 2ab + b2 – 4ab + 4ab = (a – b)2 + 4ab 
Thay a – b = m, a.b = n vào biểu thức ta được :
(a + b)2 = m2 + 4n 
b) a2 + b2 = (a + b)2 – 2ab = m2 – 2n 
c) a3 – b3 = (a – b)3 + 3ab(a – b) = m3 + 3m.n = m(m2 + 3n)
*Bài tập 8: Cho a + b = p ; a – b = q . Tìm theo p,q giá trị của các biểu thức sau:
a) a.b = ?
Ta có: (a + b)2 – (a – b)2 = 4ab 
ab = = 
b) a3 + b3 = (a + b)3 – 3ab(a + b) = p3 – 3p. = 
*Bài tập 9: Tìm giá trị nhỏ nhất của các biểu thức:
a) M = x2 – 4x + 7 = x2 – 4x + 4 + 3 = (x – 2)2 + 3 
Ta thấy: (x – 2)2 ≥ 0 nên M ≥ 3 
Hay GTNN của M bằng 3
Giá trị này đạt được khi (x – 2)2 = 0 x – 2 = 0 x = 2 
b) N = (x2 – 4x – 5)(x2 – 4x – 19) + 49 
N = (x2 – 4x – 5 )(x2 – 4x – 5 – 14) + 49 
N = (x2 – 4x – 5)2 – 14(x2 – 4x – 5) + 49 
N = (x2 – 4x – 5)2 - 2.7(x2 – 4x – 5 ) + 72 
N = (x2 – 4x – 5 – 7 )2 = (x2 – 4x – 12 )2 
Ta thấy : (x2 – 4x – 12)2 ≥ 0 nên N ≥ 0 
Hay GTNN của N bằng 0 
Giá trị này đạt được khi x2 – 4x – 12 = 0 (x – 6)(x + 2) = 0 
x = 6 ; hoặc x = -2 
c) P = x2 – 6x + y2 – 2y + 12 
P = x2 – 6x + 9 + y2 – 2y + 1 + 2 = (x – 3)2 + (y – 1)2 + 2 
Ta thấy: (x – 3)2 ≥ 0; và (y – 1)2 ≥ 0 nên P ≥ 2
Hay GTNN của P bằng 2
Giá trị này đạt được khi x – 3 = 0 và y – 1 = 0 
	x = 3 và y = 1 
*Chú ý về GTNN và GTLN của một biểu thức:
Cho một biểu thức A, ta nói rằng số k là GTNN của A nếu ta c/m được 2 điều kiện:
a) A ≥ k với mọi giá trị của biến đối với biểu thức A
b) Đồng thời, ta tìm được các giá trị của biến cụ thể của A để khi thay vào, A nhận giá trị k.
Tương tự, cho một biểu thức B, ta nói rằng số h là GTLN của B nếu ta c/m được 2 điều kiện:
a) B ≤ h với mọi giá trị của biến đối với biểu thức B.
b) Đồng thời, ta tìm được các giá trị của biến cụ thể của B để khi thay vào, B nhận giá trị h.
* Có hai loại sai lầm thường gặp của HS:
1) Khi chứng minh được a), vội kết luận mà quên kiểm tra điều kiện b)
2) Đã hoàn tất được a) và b), tuy nhiên, bài toán đòi hỏi xét trên một tập số nào đó thôi, tức là thêm các yếu tố ràng buộc, mà HS không để ý rằng giá trị biến tìm được ở bước b) lại nằm ngoài tập cho trước đó.
*Ví dụ 1: Tìm GTNN của biểu thức A = (x2 + 1)2 + 4
Giả sử lời giải như :
Vì (x2 + 1)2 ≥ 0 nên A ≥ 4 .
Vậy GTNN của biểu thức là 4.
Kết luận về GTNN như thế là mắc phải sai lầm loại 1), tức là quên kiểm tra điều kiện b) . Thực ra để cho A bằng 4, ta phải có (x2 + 1)2 = 0 , nhưng điều này không thể xảy ra được với mọi giá trị của biến x.
*Ví dụ 2: Cho x và y là các số hữu tỉ và x ≠ y .Tìm GTNN của biểu thức 
B = (x – y)2 + 2 
Giả sử lời giải như sau:
Vì (x – y)2 ≥ 0 nên B ≥ 2 
Mặt khác khi thay x = y = 1, B nhận giá trị 2 
Vậy GTNN của biểu thức B là 2.
ở đây, kết luận về GTNN như thế là mắc phải sai lầm loại 2), tức là quên kiểm tra điều kiện ràng buộc x ≠ y .
*Bài tập 10: Tìm GTNN của các biểu thức sau:
a) A = x2 – 4x + 9 
Ta có : A = x2 – 4x + 4 + 5 = (x – 2)2 + 5 
Ta thấy (x – 2)2 ≥ 0, nên (x – 2)2 + 5 ≥ 5 
Hay GTNN của A bằng 5 , giá trị này đạt được khi (x – 2)2 = 0 
 x – 2 = 0 x = 2 
b) B = x2 – x + 1 
Ta có: B = x2 – 2.x + = (x - )2 + 
Vậy GTNN của B bằng , giá trị này đạt được khi x = 
c) C = 2x2 – 6x = 2(x2 – 3x) = 2[(x2 – 2.x + ] = 2(x - )2 - 
Vậy GTNN của C bằng - , giá trị này đạt được khi x = 
*Bài tập 11: Tìm GTLN của các đa thức:
a) M = 4x – x2 + 3 = - x2 + 4x – 4 + 7 = 7 – (x2 – 4x + 4) = 7 – (x – 2)2 
Ta thấy: (x – 2)2 ≥ 0 ; nên - (x – 2)2 ≤ 0 .
Do đó: M = 7 – (x – 2)2 ≤ 7 
Vậy GTLN của biểu thức M bằng 7, giá trị này đạt được khi x = 2 
b) N = x – x2 = - x2 + 2.x - = 2 
Vậy GTLN của N bằng , giá trị này đạt được khi x = 
c) P = 2x – 2x2 – 5 = 2( - x2 + x – 5) = 2[( - x2 + 2. x – ) – ] 
= - - (x - )2 ≤ - 
Vậy GTLN của biểu thức P bằng - , giá trị này đạt được khi x = 
*Chú ý: Dạng toán này tương tự dạng : Chứng minh 1 biểu thức luôn dương, hoặc luôn âm, hoặc lớn hơn, nhỏ hơn 1 số nào đó. 
*Bài tập 4 : Tìm x , biết rằng:
a) 9x2 – 6x – 3 = 0 
9x2 – 2.3x.1 + 1 – 4 = 0
(3x – 1)2 – 4 = 0
(3x – 1 + 2)(3x – 1 – 2) = 0
(3x + 1)(3x – 3) =0
b) x3 + 9x2 + 27x + 19 = 0
x3 + 3.x2.3 + 3.x.32 + 33 – 8 =0 
(x + 3)3 – 8 = 0
(x + 3)3 – 23 = 0
(x + 3 – 2)[(x + 3)2 + 2(x + 3) + 4] = 0
(x + 1)(x2 + 6x + 9 + 2x + 6 + 4) =0
(x + 1)(x2 + 8x + 19) = 0
(x + 1)[x2 + 2.4x + 16 + 3] = 0
(x + 1)[(x + 4)2 + 3] = 0
x + 1 = 0 Vì (x + 4)2 + 3 > 0 , với mọi giá trị của biến x.
x = -1 
c) x(x + 5)(x – 5) – (x + 2)(x2 – 2x + 4) = 3
x(x2 – 25) – (x3 + 8) – 3 = 0
x3 – 25x – x3 – 8 – 3 = 0
- 25x = 11
x = - 
*Bài tập 12 : Tìm x, y, z biết rằng: 
x2 + 2x + y2 – 6y + 4z2 – 4z + 11 = 0
(x2 + 2x + 1) + (y2 – 6y + 9) + (4z2 – 4z + 1) = 0
(x + 1)2 + (y – 3)2 + (2z – 1)2 = 0 
*Bài tập 13 : Cho a + b = 1 .Tính a3 + 3ab + b3 
Ta có: a3 + 3ab + b3 = (a + b)3 – 3ab(a + b) + 3ab = (a + b)3 – 3ab + 3ab 
= (a + b)3 = 1 ( Vì a + b = 1)
* Bài tập 14 : Chứng minh các biểu thức sau nhận giá trị dương với mọi giá trị của biến:
a) A = x2 – x + 1 
A = x2 – 2.x + = (x - 
Vì (x - )2 ≥ 0 nên (x - > 0 , với mọi giá trị của biến 
Hay A > 0 , với mọi giá trị của biến.
b) B = (x – 2)(x – 4) + 3 = x2 – 4x – 2x + 8 + 3 = x2 – 6x + 9 + 2 
= (x – 3)2 + 2 
Vì (x – 3)2 ≥ 0 nên (x – 3)2 + 2 > 0, với mọi giá trị của biến
Hay B > 0, với mọi giá trị của biến.
c) C = 2x2 – 4xy + 4y2 + 2x + 5 
C = x2 – 4xy + 4y2 + x2 + 2x + 1 + 4 = (x – 2y)2 + (x + 1)2 + 4 
Vì (x – 2y)2 ≥ 0 , và (x + 1)2 ≥ 0 nên (x – 2y)2 + (x + 1)2 + 4 > 0, với mọi x 
Hay C > 0, với mọi x.
*Bài tập 15 : Chứng minh các đẳng thức sau:
a) (a2 + b2)2 – 4a2b2 = (a + b)2(a – b)2 
Ta biến đổi vế trái:
VT = (a2 + b2)2 – 4a2b2 = (a2 + b2)2 – (2ab)2 = (a2 + b2 + 2ab)(a2 + b2 – 2ab) 
= (a + b)2(a – b)2 = VP.
Vậy đẳng thức được chứng minh.
b) (a2 + b2)(x2 + y2) = (ax – by)2 + (bx + ay)2 
Ta có: 
VT = (a2 + b2)(x2 + y2) = a2x2 + a2y2 + b2x2 + b2y2 
= a2x2 – 2ax.by + b2y2 + a2y2 + 2ay.bx + b2x2 = (ax – by)2 + (bx + ay)2 = VP.
Vậy đẳng thức được chứng minh.
c) a3 – b3 + ab(a – b) = (a – b)(a + b)2 
Ta có : VT = a3 – b3 + ab(a – b) = (a – b)(a2 + ab + b2) + ab(a – b) 
= (a – b)(a2 + ab + b2 + ab) = (a – b)(a + b)2 
d)(a – b)3 + (b – c)3 + (c – a)3 = 3(a – b)(b – c)(c – a)
VT = (a – b)3 + (b – c)3 + (c – a)3 
= a3 – 3a2b + 3ab2 – b3 + b3 – 3b2c + 3bc2 – c3 + c3 – 3c2a + 3ca2 – a3 
= - 3a2b + 3ab2 – 3b2c + 3bc2 – 3c2a + 3ca2 
VP = 3(a – b)(b – c)(c – a) 
= 3(ab – ac – b2 + bc)(c – a) 
= 3(abc – a2b – ac2 + a2c – b2c + ab2 + bc2 – abc) 
= - 3a2b – 3ac2 + 3a2c – 3b2c + 3ab2 + 3bc2 
Vậy VT = VP 
Do đó đẳng thức được chứng minh.
*Bài tập 16 : Giải các phương trình sau:
a) x2 – 4x + 4 = 25
(x – 2)2 – 25 = 0
(x – 2 + 5)(x – 2 – 5) = 0
(x + 3)(x – 7) = 0
x + 3 = 0 hoặc x – 7 = 0
x = -3 hoặc x = 7
b) (5 – 2x)2 – 16 = 0
(5 – 2x + 4)(5 – 2x – 4) = 0
(9 – 2x)(1 – 2x) = 0
9 – 2x = 0 hoặc 1 – 2x = 0
9 = 2x hoặc 2x = 1
x = hoặc x = 
c) (x – 3)3 – (x – 3)(x2 + 3x + 9) + 9(x + 1)2 = 15 
x3 – 9x2 + 27x – 27 – x3 + 27 + 9x2 + 18x + 9 – 15 = 0
27x + 18x + 9 – 15 = 0
45x = 6 
x = 
*Bài tập 17 : Tính giá trị của các biểu thức:
a) A = 49x2 – 56x + 16 , với x = 2
Ta có: A = (7x – 4)2 
Với x = 2 thì: A = (7.2 – 4)2 = 102 = 100
b) B = 27x3 + 54x2 + 36x + 8 , với x = - 2
Ta có: B = (3x)3 + 3.(3x)2.2 + 3.(3x).4 + 23 = (3x + 2)3 
Với x = -2 thì:
B = [3.(-2) + 2]3 = (-4)3 = - 64
c) C = (x – 1)3 – 4x(x + 1)(x – 1) + 3(x – 1)(x2 + x + 1) + 3(x – 1)2 , với x = - 
Ta có: 
C = (x – 1)3 – 4x(x2 – 1) + 3(x3 – 1) + 3(x2 – 2x + 1) 
C = x3 – 3x2 + 3x – 1 – 4x3 + 4x + 3x3 – 3 + 3x2 – 6x + 3 
C = x – 1 
Với x = - thì: C = - - 1 = - 
*Bài tập 18 : CMR tích của 4 số tự nhiên liên tiếp cộng với 1 là một số chính phương.
Giải:
Gọi 4 số tự nhiên liên tiếp là n , n + 1 , n + 2 , n + 3 . Khi đó ta có:
Tích của 4 số tự nhiên liên tiếp là:
A = n(n + 1)(n + 2)(n + 3)+ 1 
A= (n2 + 3n)(n2 + 3n + 2) + 1 
= (n2 + 3n)2 + 2(n2 + 3n) + 1 = (n2 + 3n + 1)2 
Vì n là số tự nhiên nên (n2 + 3n + 1)2 là một số chính phương.
Vậy n(n + 1)(n + 2)(n + 3) là một số chính phương.
Ngày soạn
Ngày dạy
Tuần
Tháng
Lớp
18/10/2018
22/10/2018
24/10/2018
26/10/2018
4
10
8B2
ÔN TẬP: ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC VÀ HÌNH THANG
A.Kiến thức cần nhớ 
I.Đường trung bình của tam giác
1. Định nghĩa đường trung bình của tam giác, của hình thang. Vẽ hình minh họa.
2. Định lý 1, 2 về đường trung bình của tam giác. Vẽ hình và viết biểu thức của ĐL.
3. Định lý 3, 4 về đường trung bình của hình thang. Vẽ hình và viết biểu thức của ĐL II.Đường trung bình của hình thang
1. Định nghĩa đường trung bình của tam giác, của hình thang. Vẽ hình minh họa.
2. Định lý 1, 2 về đường trung bình của tam giác. Vẽ hình và viết biểu thức của ĐL.
3. Định lý 3, 4 về đường trung bình của hình thang. Vẽ hình và viết biểu thức của ĐL.
B. Bài tập 
Bài 1 : Cho tam giác ABC , đường trung tuyến AM 
Lấy điểm D thuộc AC sao cho DC=2AD , gọi I là giao điểm của BD&AM . Chứng minh AI=MI 
Gọi I là trung điểm AM . D là giao điểm của BI&AC . Chứng minh DC=2AD 
Bài 2 : Cho tam giác ABC , các đường trung tuyến BE ,CD cắt nhau tại G . Gọi I,K theo thứ tự là trung điểm của BG, CG . Chứng minh DE//IK 
Bài 3 : tìm x trong hình vẽ sau 
Bài 4 :Chứng minh AH=HK
Bài 5 : Cho tam giác ABC vuông tại B , góc A=60 , phân giác của góc A là AD , Gọi M, N, I theo thứ tự là trung điểm của AD, AC, CD 
Chứng minh BNMI là hình thang cân 
Tính các góc của hình thang cân trên 
Bài 6 ; Cho tứ giác ABCD , gọi E,F,I theo thứ tự là trung điểm của AD,BC,CA , chứng minh ABCD là hình thang khi I,E,F thẳng hàng 
Bài 7 : Cho hình thang ABCD (AB//CD) , Gọi E,F,I ,K theo thứ tự là trung điêm AD, BC,CA,BD . tính độ dài các đoạn thẳng EK, KI ,IF biết 
AB=12cm . CD=16cm 
AB=8cm , CD=6cm 
Bài 8 : Cho tam giác ABC , M&N theo thứ tư là trung điểm AB&AC , , Trên tia đối của tia Mn lấy điểm P sao cho NP=MN , chứng minh 
Chứng minh MP=BC 
CP//AB 
MB=CP 
Bài 9 : cho tam giác BAC, M là trung điểm của Bc , I là trung điểm của AM . chứng minh BD=2AD 
Bài 10 :Cho ABC, gọi M, N, P lần lượt là trung điểm AB, AC và BC. Nối AP cắt MN tại I. C/m I là trung điểm chung của AP và MN
Bài 11 :Cho . Trên các cạnh AB, AC lấy D, E sao cho AD= AB; AE=AC. DE cắt BC tại F. C/M: CF= BC
Bài 12 : vuông tại A có AB = 8; BC = 17. Vẽ vào trong một tam giác vuông cân DAB có cạnh huyền AB. Gọi E là trung điểm BC. Tính DE.
Bài 13: Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho DB = BA. Trên tia đối của tia CB lấy điểm E sao cho CE = CA. Kẻ BH vuông góc với AD, CK vuông góc với AE. Chứng minh rằng: 
a) AH = HD.
b) HK//BC.
Bài 14:Cho tam giác ABC có BC = 8cm, các trung tuyến BD, CE. Gọi MN theo thứ tự là trung điểm của BE, CD. Gọi giao điểm của MN với BD, CE theo thứ tự là I, K.
a) Tính độ dài MN.
b) Chứng minh rằng MI = IK = KN.
Bài 15:Cho tam giác ABC c©n t¹i A , gäi D vµ E theo thø tù lµ trung ®iÓm cña AB vµ AC.
a) X¸c ®Þnh d¹ng tø gi¸c BDEC
b) Cho biÕt BC = 8 cm, tÝnh HB , HC 
 Ngày.........tháng.......năm 2018
 Kí duyệt
Ngày soạn
Ngày dạy
Tuần
Tháng
Lớp
2/11/2018
5/11/2018
7/11/2018
9/11/2018
1
11
8B2
ÔN TẬP: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
I. MỤC TIÊU 
Sau khi học xong bài này HS:
1. Kiến thức, kĩ năng
a, Kiến thức 
- Hiểu được cách phân tích đa thức thành nhân tử bằng phương pháp nhân tử chung dùng hằng đẳng thức nhóm hạng tử ( Phương pháp tách một hạng tử thành nhiều hạng tử , ,phương pháp thêm bớt cùng một hạng tử, Thêm và bớt cùng một hạng tử làm xuất hiện hiệu của hai bình phương, Thêm và bớt cùng một hạng tử làm xuất hiện nhân tử chung.,phương pháp đổi biến (Hay phương pháp đặt ẩn phụ)
b, Kỹ năng
- Rèn kĩ năng phân tích đa thức thành nhân tử bằng các phương pháp.
- Rèn kĩ năng tính nhanh giá trị của một biểu thức thông qua việc phân tích đa thức thành nhân tử.
- Rẽn kĩ năng tìm x thông qua bài toán phân tích đa thức thành nh

Tài liệu đính kèm:

  • docgiao_an_phu_dao_mon_toan_lop_8_nam_hoc_2020_2021_dang_thi_ng.doc