Giáo án Hình học Lớp 8 - Các bài toán về định lí Ta-lét

Giáo án Hình học Lớp 8 - Các bài toán về định lí Ta-lét

Bài 1:

 Cho tứ giác ABCD, AC và BD cắt nhau tại O. Đưường thẳng qua O và song song với BC cắt AB ở E; đưường thẳng song song với CD qua O cắt AD tại F

a) Chứng minh FE // BD

b) Từ O kẻ các đưường thẳng song song với AB, AD cắt BD, CD tại G và H.

Chứng minh: CG. DH = BG. CH

Bài 2:

Cho hình bình hành ABCD, điểm M thuộc cạnh BC, điểm N thuộc tia đối của tia BC sao cho BN = CM; các đưường thẳng DN, DM cắt AB theo thứ tự tại E, F.

Chứng minh:

a) AE2 = EB. FE

b) EB = . EF

 

doc 5 trang thucuc 4740
Bạn đang xem tài liệu "Giáo án Hình học Lớp 8 - Các bài toán về định lí Ta-lét", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHUYÊN ĐỀ 6 - CÁC BÀI TOÁN VỀ ĐỊNH LÍ TA-LÉT
A.Kiến thức:
1. Định lí Ta-lét:
* Định lí Ta-lét: 
* Hệ quả: MN // BC 
B. Bài tập áp dụng:
1. Bài 1:
Cho tứ giác ABCD, đường thẳng qua A song song với BC cắt BD ở E, đường thẳng qua B song song với AD cắt AC ở G
a) chứng minh: EG // CD
b) Giả sử AB // CD, chứng minh rằng AB2 = CD. EG
Giải
Gọi O là giao điểm của AC và BD
a) Vì AE // BC (1)
 BG // AC (2)
Nhân (1) với (2) vế theo vế ta có: EG // CD
b) Khi AB // CD thì EG // AB // CD, BG // AD nên
Bài 2: 
Cho ABC vuông tại A, Vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD, K là giao điểm của Ac và BF.
Chứng minh rằng:
a) AH = AK
b) AH2 = BH. CK
Giải 
Đặt AB = c, AC = b. 
BD // AC (cùng vuông góc với AB) 
nên 
Hay (1)
AB // CF (cùng vuông góc với AC) nên 
Hay (2)
Từ (1) và (2) suy ra: AH = AK
b) Từ và suy ra (Vì AH = AK)
 AH2 = BH . KC
3. Bài 3: Cho hình bình hành ABCD, đường thẳng a đi qua A lần lượt cắt BD, BC, DC theo thứ tự tại E, K, G. Chứng minh rằng:
a) AE2 = EK. EG 
b) 
c) Khi đường thẳng a thay đổi vị trí nhưng vẫn qua A thì tích BK. DG có giá trị không đổi
Giải
a) Vì ABCD là hình bình hành và K BC nên
AD // BK, theo hệ quả của định lí Ta-lét ta có:
b) Ta có: ; nên
 (đpcm)
c) Ta có: (1); (2)
Nhân (1) với (2) vế theo vế ta có: không đổi (Vì a = AB; b = AD là độ dài hai cạnh của hình bình hành ABCD không đổi)
4. Bài 4: 
 Cho tứ giác ABCD, các điểm E, F, G, H theo thứ tự chia trong các cạnh AB, BC, CD, DA theo tỉ số 1:2. Chứng minh rằng:
a) EG = FH
b) EG vuông góc với FH 
Giải
Gọi M, N theo thứ tự là trung điểm của CF, DG
Ta có CM = CF = BC 
EM // AC (1)
Tơng tự, ta có: NF // BD (2)
mà AC = BD (3)
Từ (1), (2), (3) suy ra : EM = NF (a)
Tơng tự nh trên ta có: MG // BD, NH // AC và MG = NH = AC (b)
Mặt khác EM // AC; MG // BD Và AC BD EM MG (4)
Tơng tự, ta có: (5)
Từ (4) và (5) suy ra (c)
Từ (a), (b), (c) suy ra EMG = FNH (c.g.c) EG = FH
b) Gọi giao điểm của EG và FH là O; của EM và FH là P; của EM và FN là Q thì 
 mà (đối đỉnh), (EMG = FNH)
Suy ra EO OP EG FH
5. Bài 5: 
Cho hình thang ABCD có đáy nhỏ CD. Từ D vẽ đường thẳng song song với BC, cắt AC tại M và AB tại K, Từ C vẽ đờng thẳng song song với AD, cắt AB tại F, qua F ta lại vẽ đường thẳng song song với AC, cắt BC tại P. Chứng minh rằng
a) MP // AB
b) Ba đường thẳng MP, CF, DB đồng quy
Giải
a) EP // AC (1)
 AK // CD (2)
 các tứ giác AFCD, DCBK la các hình bình hành nên 
AF = DC, FB = AK (3)
Kết hợp (1), (2) và (3) ta có MP // AB (Định lí Ta-lét đảo) (4)
b) Gọi I là giao điểm của BD và CF, ta có: = 
Mà (Do FB // DC) IP // DC // AB (5)
Từ (4) và (5) suy ra : qua P có hai đường thẳng IP, PM cùng song song với AB // DC nên theo tiên đề Ơclít thì ba điểm P, I, M thẳng hàng hay MP đi qua giao điểm của CF và DB hay ba đường thẳng MP, CF, DB đồng quy
6. Bài 6:
Cho ABC có BC < BA. Qua C kẻ đường thẳng vuông goác với tia phân giác BE của ; đờng thẳng này cắt BE tại F và cắt trung tuyến BD tại G. Chứng minh rằng đoạn thẳng EG bị đoạn thẳng DF chia làm hai phần bằng nhau
Giải
Gọi K là giao điểm của CF và AB; M là giao điểm của DF và BC
KBC có BF vừa là phân giác vừa là đường cao nên KBC cân tại B BK = BC và FC = FK
Mặt khác D là trung điểm AC nên DF là đường trung bình của AKC DF // AK hay DM // AB
Suy ra M là trung điểm của BC 
DF = AK (DF là đường trung bình của AKC), ta có
( do DF // BK) (1)
Mổt khác (Vì AD = DC) 
Hay (vì = : Do DF // AB)
Suy ra (Do DF = AK) (2)
Từ (1) và (2) suy ra = EG // BC
Gọi giao điểm của EG và DF là O ta có OG = OE 
Bài tập về nhà
Bài 1: 
 Cho tứ giác ABCD, AC và BD cắt nhau tại O. Đường thẳng qua O và song song với BC cắt AB ở E; đường thẳng song song với CD qua O cắt AD tại F
a) Chứng minh FE // BD
b) Từ O kẻ các đường thẳng song song với AB, AD cắt BD, CD tại G và H. 
Chứng minh: CG. DH = BG. CH
Bài 2: 
Cho hình bình hành ABCD, điểm M thuộc cạnh BC, điểm N thuộc tia đối của tia BC sao cho BN = CM; các đường thẳng DN, DM cắt AB theo thứ tự tại E, F. 
Chứng minh: 
a) AE2 = EB. FE
b) EB =. EF

Tài liệu đính kèm:

  • docgiao_an_hinh_hoc_lop_8_cac_bai_toan_ve_dinh_li_ta_let.doc