Phiếu học tập Toán Lớp 8 - Tuần 18 - Phùng Chí Tự

Phiếu học tập Toán Lớp 8 - Tuần 18 - Phùng Chí Tự

Bài 6: Cho ∆ABC vuông tại A có AB = 6cm, AC = 8cm. AM là đường trung tuyến.

a) Tính độ dài đoạn thẳng AM

b) Từ M vẽ MK vuông góc AB, MN vuông góc AC. Chứng minh: AKMN là hình chữ nhật

c) Chứng minh KMCN là hình bình hành

d) Vẽ AH vuông góc BC. Chứng minh KHMN là hình thang cân

 

docx 5 trang Phương Dung 4050
Bạn đang xem tài liệu "Phiếu học tập Toán Lớp 8 - Tuần 18 - Phùng Chí Tự", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
PHIẾU HỌC TẬP TOÁN 8 TUẦN 18
Đại số 8 : 	Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Hình học 8: 	Ôn tập chứng minh hình học.
Bài 1: Thực hiệc các phép tính sau:
a) 
b) 
Bài 2: Phân tích các đa thức sau thành nhân tử:
a) 
b) 
Bài 3 : a) Tìm x biết: 
b) Tìm giá trị nhỏ nhất của biểu thức: 
Bài 4: Rút gọn biểu thức:
Bài 5: Cho phân thức 
a) Tìm điều kiện để giá trị của biểu thức xác định.
b) Tìm giá trị của x để biểu thức bằng 0.
c) Tìm x khi |M| = 1
Bài 6: Cho ∆ABC vuông tại A có AB = 6cm, AC = 8cm. AM là đường trung tuyến.
a) Tính độ dài đoạn thẳng AM
b) Từ M vẽ MK vuông góc AB, MN vuông góc AC. Chứng minh: AKMN là hình chữ nhật
c) Chứng minh KMCN là hình bình hành 
d) Vẽ AH vuông góc BC. Chứng minh KHMN là hình thang cân
- Hết –
PHẦN HƯỚNG DẪN GIẢI
Bài 1: 
a) 
b) 
Bài 2: 
a) 
b) 
Bài 3: a) 
b) 
 với mọi x, y 
A đạt giá trị nhỏ nhất là -1 khi x = -2 và y = 2
Bài 4: 
Bài 5: a) Điều kiện để giá trị của biểu thức xác định 
 (vì > 0 và > 0 ) 
b) Ta có với 
Do với mọi giá trị của x. Nên không có giá trị nào của x để M = 0
c) Với 
|M| = 1 M = 1 hoặc M = -1
Với M = 1 ta có: 
 x = 0 (loại vì không thỏa mãn ĐKXĐ) hoặc x = 1 (loại vì không thỏa mãn ĐKXĐ)
Với M = -1 ta có: (vô nghiệm) 
Vậy không có giá trị nào của x để |M| = 1
Bài 6: 
a) Tính độ dài đoạn thẳng AM
Áp dụng định lý Pi-ta-go trong tam giác vuông ABC ta có:
(cm) 
Mà (AM là đường trung tuyến ứng với cạnh huyền BC) 
Nên AM = 5(cm) 	 
b) Từ M vẽ MK vuông góc AB, MN vuông góc AC. Chứng minh: AKMN là hình chữ nhật
Tứ giác AKMN có:
 (gt) 	
Nên tứ giác AKMN là hình chữ nhật 
c) Chứng minh KMCN là hình bình hành 
Tam giác ABC có:
M là trung điểm BC
Mà MK // AC (cùng vuông góc với AB)
Nên K là trung điểm AB (1) 
Tương tự MN // AB (cùng vuông góc với AC)
Nên N là trung điểm của AC (2) 	
Từ (1) và (2) KN là đường trung bình của ABC 	
Suy ra: KN // BC hay KN // MC (3) 
và KN = MC ( cùng = BC) (4) 
Từ (3) và (4) tứ giác KMCN có một cặp cạnh đối vừa song song vừa bằng nhau nên KMCN là hình bình hành. 
d) Vẽ AH vuông góc BC. Chứng minh KHMN là hình thang cân
Ta có: KN // BC (cmt)
Suy ra KN // HM
Vậy KHMN là hình thang (5) 
Ta lại có: 
HN = AC (đường trung tuyến ứng với cạnh huyền trong tam giác vuông AHC)
 AN = AC ( N là trung điểm AC)
Suy ra HN = AN
Mà AN = KM ( AKMN là hình chữ nhật)
Suy ra HN = KM (6) 
Từ (5) và (6) 
hình thang KHMN có hai đường chéo bằng nhau nên nó là hình thang cân.
- Hết -

Tài liệu đính kèm:

  • docxphieu_hoc_tap_toan_lop_8_tuan_18_phung_chi_tu.docx