Giáo án Hình học Lớp 8 - Học kì I - Năm học 2018-2019 - Hoàng Thị Như Trang

Giáo án Hình học Lớp 8 - Học kì I - Năm học 2018-2019 - Hoàng Thị Như Trang

- Các HS khác nhận xét

-GV: Trong các hình trên mỗi hình gồm 4 đoạn thẳng: AB, BC, CD & DA.

Hình nào có 2 đoạn thẳng cùng nằm trên một ĐT

- Ta có H1 là tứ giác, hình 2 không phải là tứ giác. Vậy tứ giác là gì ?

- GV: Chốt lại & ghi định nghĩa

- GV: giải thích : 4 đoạn thẳng AB, BC, CD, DA trong đó đoạn đầu của đoạn thẳng thứ nhất trùng với điểm cuối của đoạn thẳng thứ 4.

+ 4 đoạn thẳng AB, BC, CD, DA trong đó không có bất cứ 2 đoạn thẳng nào cùng nằm trên 1 đường thẳng.

+ Cách đọc tên tứ giác phải đọc hoặc viết theo thứ tự các đoạn thẳng như: ABCD, BCDA, ADBC

+Các điểm A, B, C, D gọi là các đỉnh của tứ giác.

+ Các đoạn thẳng AB, BC, CD, DA gọi là các cạnh của tứ giác.

* Hoạt động 2: Định nghĩa tứ giác lồi.

-GV: Hãy lấy mép thước kẻ lần lượt đặt trùng lên mỗi cạch của tứ giác ở H1 rồi quan sát

- H1(a) luôn có hiện tượng gì xảy ra ?

- H1(b) (c) có hiện tượng gì xảy ra ?

- GV: Bất cứ đương thẳng nào chứa 1 cạnh của hình H1(a) cũng không phân chia tứ giác thành 2 phần nằm ở 2 nửa mặt phẳng có bờ là đường thẳng đó gọi là tứ giác lồi.

- Vậy tứ giác lồi là tứ giác như thế nào ?

+ Trường hợp H1(b) & H1 (c) không phải là tứ giác lồi

 

doc 81 trang thuongle 3600
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Hình học Lớp 8 - Học kì I - Năm học 2018-2019 - Hoàng Thị Như Trang", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 25/8/2018
Tiết 1
CHƯƠNG I: TỨ GIÁC
 §1. TỨ GIÁC
I. MỤC TIÊU
1. Kiến thức: - HS nắm vững các định nghĩa về tứ giác, tứ giác lồi, các khái niệm: Hai đỉnh kề nhau, hai cạnh kề nhau, hai cạnh đối nhau, điểm trong, điểm ngoài của tứ giác & các tính chất của tứ giác. Tổng bốn góc của tứ giác là 3600.
2. Kỹ năng: HS tính được số đo của một góc khi biết ba góc còn lại, vẽ được tứ giác khi biết số đo 4 cạnh & 1 đường chéo.
- PTNL: Năng lực vẽ hình, năng lực hợp tác, năng lực sử dụng ngôn ngữ chặt chẽ...
3. Thái độ: Rèn tư duy suy luận ra được 4 góc ngoài của tứ giác là 3600.
II. CHUẨN BỊ:
 - GV: com pa, thước, 2 tranh vẽ hình 1 ( sgk ) Hình 5 (sgk) bảng phụ.
 - HS: Thước, com pa, bảng nhóm.
III. TIẾN TRÌNH DẠY HỌC:
1. Ổn định tổ chức: Kiểm tra sỹ số.
2. Kiểm tra bài cũ: GV: kiểm tra đồ dùng học tập của học sinh và nhắc nhở dụng cụ học tập cần thiết: thước kẻ, ê ke, com pa, thước đo góc, 
3. Bài mới:
Hoạt động của giáo viên và học sinh
Ghi bảng
* Hoạt động 1: Hình thành định nghĩa.
- GV: treo tranh (bảng phụ) B 
 B . N
 Q . 
 P C 
 A M A C 
 D
 H1(b)
 H1 (a)
 D 
 HS: Quan sát hình & trả lời
- Các HS khác nhận xét
-GV: Trong các hình trên mỗi hình gồm 4 đoạn thẳng: AB, BC, CD & DA.
Hình nào có 2 đoạn thẳng cùng nằm trên một ĐT
- Ta có H1 là tứ giác, hình 2 không phải là tứ giác. Vậy tứ giác là gì ?
- GV: Chốt lại & ghi định nghĩa 
- GV: giải thích : 4 đoạn thẳng AB, BC, CD, DA trong đó đoạn đầu của đoạn thẳng thứ nhất trùng với điểm cuối của đoạn thẳng thứ 4.
+ 4 đoạn thẳng AB, BC, CD, DA trong đó không có bất cứ 2 đoạn thẳng nào cùng nằm trên 1 đường thẳng.
+ Cách đọc tên tứ giác phải đọc hoặc viết theo thứ tự các đoạn thẳng như: ABCD, BCDA, ADBC 
+Các điểm A, B, C, D gọi là các đỉnh của tứ giác.
+ Các đoạn thẳng AB, BC, CD, DA gọi là các cạnh của tứ giác.
* Hoạt động 2: Định nghĩa tứ giác lồi.
-GV: Hãy lấy mép thước kẻ lần lượt đặt trùng lên mỗi cạch của tứ giác ở H1 rồi quan sát
- H1(a) luôn có hiện tượng gì xảy ra ?
- H1(b) (c) có hiện tượng gì xảy ra ?
- GV: Bất cứ đương thẳng nào chứa 1 cạnh của hình H1(a) cũng không phân chia tứ giác thành 2 phần nằm ở 2 nửa mặt phẳng có bờ là đường thẳng đó gọi là tứ giác lồi.
- Vậy tứ giác lồi là tứ giác như thế nào ?
+ Trường hợp H1(b) & H1 (c) không phải là tứ giác lồi
* Hoạt động 3: Nêu các khái niệm cạnh kề đối, góc kề, đối điểm trong , ngoài.
GV: Vẽ H3 và giải thích khái niệm:
GV: Không cần tính số mỗi góc hãy tính tổng 4 góc
 (độ)
- Gv: ( gợi ý hỏi)
+ Tổng 3 góc của 1 là bao nhiêu độ?
+ Muốn tính tổng (độ) ( mà không cần đo từng góc ) ta làm ntn?
+ Gv chốt lại cách làm:
- Chia tứ giác thành 2 có cạnh là đường chéo
- Tổng 4 góc tứ giác = tổng các góc của 2 ABC & ADC Tổng các góc của tứ giác bằng 3600
- GV: Vẽ hình & ghi bảng.
1) Định nghĩa 
 B
A
 C D 
 H1(c)
 A
 B ‘ D
 C H2
- Hình 2 có 2 đoạn thẳng BC & CD cùng nằm trên 1 đường thẳng.
* Định nghĩa:
 Tứ giác ABCD là hình gồm 4 đoạn thẳng AB, BC, CD, DA trong đó bất kỳ 2 đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.
* Tên tứ giác phải được đọc hoặc viết theo thứ tự của các đỉnh.
*Định nghĩa tứ giác lồi
* Định nghĩa: (sgk)
* Chú ý: Khi nói đến 1 tứ giác mà không giải thích gì thêm ta hiểu đó là tứ giác lồi
+ Hai đỉnh thuộc cùng một cạnh gọi là hai đỉnh kề nhau
+ hai đỉnh không kề nhau gọi là hai đỉnh đối nhau
+ Hai cạnh cùng xuất phát từ một đỉnh gọi là hai cạnh kề nhau
+ Hai cạnh không kề nhau gọi là hai cạnh đối nhau - Điểm nằm trong M, P điểm nằm ngoài N, Q
2/ Tổng các góc của một tứ giác ( HD4)
 B
 1 
 A 1 2 C
 2 
 D
 180 
 = 180 
 (= 3600
 Hay = 3600
* Định lý: SGK.
4. Luyên tập - Củng cố: 
- GV: cho HS làm bài tập trang 66. Hãy tính các góc còn lại
5. BT - 4. Hướng dẫn về nhà: 
- Nêu sự khác nhau giữa tứ giác lồi & tứ giác không phải là tứ giác lồi ?
- Làm các bài tập : 2, 3, 4 (sgk)
* Chú ý : T/c các đường phân giác của tam giác cân.
Ngày soạn: 26/8/2018
Tiết 2
§2. HÌNH THANG
I- MỤC TIÊU.
1. Kiến thức: - HS nắm vững các định nghĩa về hình thang , hình thang vuông các khái niệm: cạnh bên, đáy, đường cao của hình thang.
2. Kỹ năng: - Nhận biết hình thang hình thang vuông, tính được các góc còn lại của hình thang khi biết một số yếu tố về góc.
- PTNL: Năng lực vẽ hình, năng lực hợp tác, năng lực sử dụng ngôn ngữ chặt chẽ..
3. Thái độ: Rèn tư duy suy luận, sáng tạo.
II. CHUẨN BỊ:
- GV: com pa, thước, tranh vẽ bảng phụ, thước đo góc.
- HS: Thước, com pa, bảng nhóm.
III. TIẾN TRÌNH DẠY HỌC:
1. Ổn định tổ chức: -Kiểm tra sỹ số lớp.
2. Kiểm tra bài cũ: - GV: (dùng bảng phụ)
* HS1(Cường): Thế nào là tứ giác lồi ? Phát biểu ĐL về tổng 4 góc của 1 tứ giác ?
* HS 2(X.Thắng): Góc ngoài của tứ giác là góc như thế nào ? Tính tổng các góc ngoài của tứ giác
3. Bài mới:
Hoạt động của giáo viên và học sinh
Ghi bảng
* Hoạt động 1: Giới thiệu hình thang
- GV: Tứ giác có tính chất chung là
 + Tổng 4 góc trong là 3600
 + Tổng 4 góc ngoài là 3600
Ta sẽ nghiên cứu sâu hơn về tứ giác.
- GV: đưa ra hình ảnh cái thang & hỏi
+ Hình trên mô tả cái gì ?
+ Mỗi bậc của thang là một tứ giác, các tứ giác đó có đặc điểm gì ? & giống nhau ở điểm nào ?
- GV: Chốt lại
 + Các tứ giác đó đều có 2 cạnh đối //
 Ta gọi đó là hình thang ta sẽ nghiên cứu trong bài hôm nay.
* Hoạt động 2: Định nghĩa hình thang.
- GV: Em hãy nêu định nghĩa thế nào là hình thang 
- GV: Tứ giác ở hình 13 có phải là hình thang không ? vì sao ?
- GV: nêu cách vẽ hình thang ABCD
+ B1: Vẽ AB // CD
+ B2: Vẽ cạnh AD & BC & đương cao AH
- GV: giới thiệu cạnh. đáy, đường cao 
* Hoạt động 3: Bài tập áp dụng.
- GV: dùng bảng phụ hoặc đèn chiếu 
 B 600 C 
 600 
 A D (H. a)
 E I N
 F 75o 1200 
750
 G 1050 M 1150 
 H K
 1 
 (H.b) (H.c) 
- Qua đó em hình thang có tính chất gì ?
* Hoạt động 4: Bài tập áp dụng.
 GV: đưa ra bài tập HS làm việc theo nhóm nhỏ
Cho hình thang ABCD có 2 đáy AB & CD biết:
 AD // BC. CMR: AD = BC; AB = CD
 A B ABCD là hình thang 
 GT đáy AB & CD 
 AD// BC 
 KL AB=CD: AD= BC
D C 
Bài toán 2:
 A B ABCD là hình thang 
 GT đáy AB & CD 
 AB = CD 
 KL AD// BC; AD = BC
D C 
 - GV: qua bài 1 & bài 2 em có nhận xét gì ?
* Hoạt động 5: Hình thang vuông 
1) Định nghĩa
 Hình thang là tứ giác có hai cạnh đối song song
 A B
 D H C 
* Hình thang ABCD :
+ Hai cạnh đối // là 2 đáy
+ AB đáy nhỏ; CD đáy lớn
+ Hai cạnh bên AD & BC
+ Đường cao AH
 (H.a) = 60 
 AD// BC Hình thang
- (H.b)Tứ giác EFGH có: 
 = 750 = 1050 (Kề bù)
 = = 1050 GF// EH
 Hình thang
- (H.c) Tứ giác IMKN có:
 = 1200 = 1200 
IN không song song với MK
 đó không phải là hình thang
* Nhận xét:
+ Trong hình thang 2 góc kề một cạnh bù nhau (có tổng = 1800)
+ Trong tứ giác nếu 2 góc kề một cạnh nào đó bù nhau Hình thang.
* Bài toán 1
- Hình thang ABCD có 2 đáy AB & CD theo (gt)AB // CD (đn)(1) mà AD // BC (gt) (2)
Từ (1) & (2)AD = BC; AB = CD ( 2 cắp đoạn thẳng // chắn bởi đương thẳng //.)
* Bài toán 2: (cách 2)
ABC = ADC (g.c.g)
* Nhận xét 2: (sgk)/70.
2) Hình thang vuông.
 Là hình thang có một góc vuông.
 A B
 D C
4. Luyện tập - Củng cố.
Nếu còn thời gian thì cho hs làm bài tập 7 sgk.
Ngày soạn: 29/8/2018
Tiết 3
LUYỆN TẬP
I. MỤC TIÊU.
1.Kiến thức: - Ôn lại các định nghĩa về hình thang , hình thang vuông các khái niệm: cạnh bên, đáy, đường cao của hình thang.
2. Kỹ năng: Nhận biết hình thang hình thang vuông, tính được các góc còn lại của hình thang khi biết một số yếu tố về góc.
- PTNL: Năng lực vẽ hình, năng lực hợp tác, năng lực sử dụng ngôn ngữ chặt chẽ..
3. Thái độ: Rèn tư duy suy luận, sáng tạo.
II. CHUẨN BỊ:
- GV: com pa, thước, tranh vẽ bảng phụ, thước đo góc.
- HS: Thước, com pa, bảng nhóm.
III. TIẾN TRÌNH DẠY HỌC:
1. Ổn định tổ chức: -Kiểm tra sỹ số lớp.
2. Kiểm tra bài cũ: 
- Nhắc lại định nghĩa hình thang, hình thang vuông
3. Bài tập
Hoạt động của giáo viên và học sinh
Ghi bảng
Bµi 1.Tø gi¸c ABCD cã BC=CD vµ DB lµ ph©n gi¸c cña gãc D. Chøng minh ABCD lµ h×nh thang
-GV yªu cÇu HS vÏ h×nh?
- §Ó chøng minh ABCD lµ h×nh thang th× cÇn chøng minh ®iÒu g×?
- Nªu c¸ch chøng minh hai ®­êng th¼ng song song
Bµi 2.Tam gi¸c ABC vu«ng c©n t¹i A, PhÝa ngoµi tam gi¸c ABC vÏ tam gi¸c BCD vuong c©n t¹i B. Chøng minh ABDC lµ h×nh thang vu«ng
GV h­íng dÉn häc sinh vÏ h×nh
HS vÏ h×nh
- Ta chøng minh BC//AD
- ChØ ra hai gãc so le trong b»ng nhau
Ta cã c©n => B1 = D1
Mµ 
=> BC//AD
VËy ABCD lµ h×nh thang
Bài 2: HS vÏ h×nh
ABC vu«ng c©n t¹i A=>=450
BCD vu«ng c©n t¹i B=>=450
=>=900 , mµ Ë=900 =>AB//CD
=> ABDC lµ h×nh thang vu«ng
4.Cñng cè: 
GV:HÖ thèng l¹i néi dung kiÕn thøc ®· thùc hiÖn.
HS:Nh¾c lại định nghĩa về h×nh thang, hình thang vuông
 5: H­íng dÉn häc ë nhµ.
-Häc kÜ ®Þnh lý ,®Þnh nghÜa h×nh thang, hình thang vuông
- Xem l¹i c¸c bµi häc ®· ch÷a.
- Làm thêm các bài tập trong sách bài tập.
Ngày soạn: 8/9/2018
Tiết 4
§3. HÌNH THANG CÂN
I. MỤC TIÊU
1. Kiến thức: Học sinh nắm được định nghĩa, các tính chất, các dấu hiệu nhận biết hình thang cân.
2. Kỹ năng: Vẽ hình thang cân, biết sử dụng định nghĩa và tính chất của hình thang cân trong tính toán và chứng minh, biết cách chứng minh một tứ giác là hình thang cân.
- PTNL: Năng lực vẽ hình, năng lực hợp tác, năng lực vận dụng linh hoạt các kiến thức để giải quyết các bài toán thực tế, năng lực chứng minh...
3. Thái độ: Rèn tư duy lôgic, tính chính xác và cách lập luận chứng minh hình học.
II. CHUẬN BỊ
1. Giáo viên: Thước thẳng, thước đo góc, bảng phụ, compa.
2. Học sinh: Ôn tập các kiến thức về hình thang đã học, thước thẳng, thước đo góc, compa.
III. TIẾN TRÌNH BÀI DẠY
 1.Ổn định tổ chức: Kiểm tra sỉ số
2. Kiểm tra bài cũ. 
Hoạt động của giáo viên và học sinh
Ghi bảng
GV: Nêu câu hỏi:
- Hình thang có 2 cạnh bên song song, có 2 cạnh đối bằng nhau thì rút ra nhận xét gì ? 
- HS phát biểu nhận xét.
GV: Yêu cầu HS làm bài 9/ SGK.
- HS lên bảng thực hiện. HS khác nhận xét.
GV: Đánh giá và ghi điểm.
Bài 9/ 7 SGK:
Vì ABC cân tại B nên:
Mà (gt)
 AD// BC
Vậy: Tứ giác ABCD là hình thang.
3/ Bài mới: 
Hoạt động của giáo viên và học sinh
Ghi bảng
Hoạt động 1: Định nghĩa 
GV: Treo bảng phụ hình 23. Yêu cầu HS trả lời ?1
- HS quan sát hình vẽ và trả lời ?1: 
GV: Giới thiệu: Đó là hình thang cân. Vậy thế nào là hình thang cân?
-HS nêu định nghĩa hình thang cân
GV: Hãy nêu cách vẽ hình thang cân.
- HS: Vẽ hình thang sao cho có 2 góc kề 1 cạnh đáy bằng nhau.
GV: So sánh và từ đó rút ra nhận xét.
- HS: 
 Nhận xét: Hình thang cân có 2 góc kề đáy bằng nhau.
GV: Muốn chứng minh tứ giác ABCD là hình thang cân thì ta cần chứng minh điều gì?
- HS suy nghĩ trả lời.
GV: Giới thiệu chú ý
GV: Cho HS hoạt động nhóm thực hiện ?2. (trong 3 phút). Gọi đại diện nhóm lên bảng trình bày.
- HS hoạt động nhóm (2 – 4em)
- Đại diện nhóm lên bảng trình bày. HS cả lớp ghi vào vở
GV: Yêu cầu HS nhận xét, bổ sung. 
- Học sinh nhận xét, bổ sung.
GV: Chốt bài
1/ Định nghĩa: 
- Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.
Tứ giác ABCD là hình thang cân
Chú ý: (SGK/ 72)
?2
a) Các hình thang cân: ABDC; IKMN; PQST.
b)=1000,=1100,, =900
c) Hai góc đối của hình thang cân bù nhau.
Hoạt động 2: Tính chất 
GV: Treo tranh hình 23 lên bảng.
- Có nhận xét gì về 2 cạnh bên của hình thang cân?
- HS: AD = BC.
GV: Em hãy rút ra nhận xét?
- HS dự đoán hình thang cân có hai cạnh bên bằng nhau.
GV: Hướng dẫn HS Chứng minh định lí 1.
-HS làm theo hướng dẫn của GV 
GV: Gọi HS ghi GT-KL bảng.
GV: Treo bảng phụ hình 27 đưa ra chú ý.
- HS chú ý theo dõi.
GV: Treo bảng phụ hình 23. Vẽ 2 đường chéo của hình thang?
- 1HS lên bảng vẽ hình.
- Có nhận xét gì về 2 đường chéo trên?
- HS: Hai đường chéo bằng nhau.
GV: Ghi GT và KL của định lý.
- HS ghi GT và KL.
GV: Hướng dẫn HS chứng minh định lí.
- HS chú ý theo dõi.
2/ Tính chất:
* Định lý 1: (SGK/ 72).
GT
ABCD lµ h×nh thang c©n (AB//CD)
KL
AD=BC
* Chú ý: (SGK/ 73)
* Định lý 2: (SGK/ 73).
GT
ABCD là hình thang cân (AB//CD)
KL
AC=BD
Hoạt động 3: Dấu hiệu nhận biết
GV: Yêu cầu HS làm ?3.
- HS suy nghĩ làm bài.
GV: Có thể hướng dẫn HS cách làm.
- HS lắng nghe.
GV: Để vẽ 2 đường chéo bằng nhau ta dùng compa để xác định.
GV: Qua kết quả của bài toán trên ta rút ra được điều gì?
- HS: Hình thang có hai đường chéo bằng nhau là hình thang cân.
GV hỏi: Có những dấu hiệu nào để nhận biết 1 hình thang là hình thang cân?
- HS trả lời. HS khác nhận xét
3/ Dấu hiệu nhận biết:
* Định lý 3: (SGK/ 74).
GT
Hình thang ABCD (AB//CD), AC = BD.
KL
ABCD cân.
* Dấu hiệu nhận biết hình thang cân: 
(SGK/ 74)
 4. Củng cố: 
HOẠT ĐỘNG CỦA GV VÀ HS
NỘI DUNG CẦN ĐẠT
GV: Qua bài học này, chúng ta cần ghi nhớ những nội dung kiến thức nào?
- HS: Định nghĩa, tính chất và dấu hiệu nhận biết hình thang cân.
GV: Tứ giác ABCD (AD//BC) là hình thang cân cần thêm điều kiện gì?
- HS trả lời. HS khác nhận xét.
 5/ Hướng dẫn về nhà: 
 - Học kĩ định nghĩa, tính chất, dấu hiệu nhận biết hình thang cân.
 - Làm bài 11, 12, 13, 15/ 74 – 75 SGK.
Ngày soạn: 9/9/2018
Tiết 5
LUYỆN TẬP
I. MỤC TIÊU.
1. Kiến thức: - HS nắm vững, củng cố các định nghĩa, các tính chất của hình thang, các dấu hiệu nhận biết về hình thang cân.
2. Kỹ năng: - Nhận biết hình thang hình thang cân, biết vẽ hình thang cân, biết sử dụng định nghĩa, các tính chất vào chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau dựa vào dấu hiệu đã học. Biết chứng minh 1 tứ giác là hình thang cân theo điều kiện cho trước. Rèn luyện cách phân tích xác định phương hướng chứng minh. 
- PTNL: Năng lực tính toán, năng lực chứng minh, năng lực hợp tác, năng lực vẽ hình, năng lực vận dụng linh hoạt các kiến thức giải quyết các bài toán thực tế..
3. Thái độ: Rèn tư duy suy luận, sáng tạo, tính cẩn thận. 
II. CHUẨN BỊ:
- GV: com pa, thước, tranh vẽ bảng phụ, thước đo góc.
- HS: Thước, com pa, bảng nhóm.
III. TIẾN TRÌNH DẠY HỌC:
1. Ôn định tổ chức: Kiểm tra sỉ số
2. Kiểm tra bài cũ.
- HS1: Phát biểu định nghĩa hình thang cân & các tính chất của nó?
- HS2: Muốn CM 1 hình thang nào đó là hình thang cân thì ta phải CM thêm ĐK nào?
- HS3: Muốn CM 1 tứ giác nào đó là hình thang cân thì ta phải CM như thế nào?
3. Bài mới:
Hoạt động của giáo viên và học sinh 
Ghi bảng
Luyện Tập.
GV: Cho HS đọc kĩ đầu bài & ghi (gt) (kl)
- HS lên bảng trình bày 
 Hình thang ABCD cân (AB//CD)
 GT AB < CD; AE DC; BF DC
 KL DE = CF 
GV: Hướng dẫn theo phương pháp đi lên:
- DE = CF AED = BFC 
 BC = AD ; ; (gt)
Ngoài ra AED = BFC theo trường hợp nào ? vì sao ? 
GV: Nhận xét cách làm của HS 
GT ABC cân tại A; D AD
 E AE sao cho AD = AE;
 = 500
 a) BDEC là hình thang cân
 KL b) Tính các góc của hình thang.
HS lên bảng chữa bài
b) = 500 (gt)
 = = 650
 = 1800 - 650 = 1150
GV: Cho HS làm việc theo nhóm
-GV: Muốn chứng minh tứ giác BEDC là hình thang cân đáy nhỏ bằng cạnh bên
( DE = BE) thì phải chứng minh như thế nào ?
- Chứng minh : DE // BC (1)
 B ED cân (2)
- HS trình bày bảng
Chữa bài 12/74 (sgk) 
Kẻ AH DC ; BF DC ( E,F DC)
=> ADE vuông tại E BCF vuông tại F
AD = BC ( cạnh bên của hình thang cân)
 ( Đ/N) AED = BFC ( Cạnh huyền & góc nhọn) 
2. Chữa bài 15/75 (sgk)
a) ABC cân tại A (gt)
 (1)
AD = AE (gt) 
 ADE cân tại A 
 ABC cân & 
 ADE cân
 ; = 
 (vị trí đồng vị) 
DE // BC Hay BDEC là hình thang (2)
 Từ (1) & (2) BDEC là hình thang cân .
 3. Chữa bài 16/ 75
 ABC cân tại A, BD & CE
 GT Là các đường phân giác
 KL a) BEDC là hình thang cân
 b) DE = BE = DC
 A
 Chứng minh 
a) ABC cân tại A
 ta có: 
AB = AC; E D
 (1) 
 2 2
 B 1 1 C 
BD & CE là các đường phân giác nên có:
 (2); (3)
 Từ (1) (2) &(3) 
 BDC & CBE có ; ; 
 BC chung BDC = CBE (g.c.g)
 BE = DC mà AE = AB - BE
 AD = AB – DC=>AE = AD Vậy AED cân tại A 
Ta có 
 ED// BC ( 2 góc đồng vị bằng nhau)
Vậy BEDC là hình thang có đáy BC &ED mà BEDC là hình thang cân.
b) Từ (gt) 
 BED cân tại E ED = BE = DC.
4. Luyên tập - Củng cố.
Gv nhắc lại phương pháp chứng minh, vẽ 1 tứ giác là hình thang cân.
- CM các đoạn thẳng bằng nhau, tính số đo các góc tứ giác qua chứng minh hình thang.
5. BT - Hướng dẫn về nhà.
- Làm các bài tập 14, 18, 19 /75 (sgk)- Xem lại bài đã chữa.
Làm thêm một số bài tập
Cho hình thang ABCD (AB // CD) có AC = BD. Qua B kẻ đường thẳng song song với AC cắt đường thẳng DC tại E. Chứng minh:
	a) Tam giác BDE là tam giác cân.
	b) Các tam giác ACD và BDC bằng nhau.
	c) ABCD là hình thang cân.
Cho tam giác đều ABC và điểm M thuộc miền trong của tam giác. Qua M kẻ đường thẳng song song với BC cắt AB ở D, đường thẳng song song với AC cắt BC ở E, đường thẳng song song với AB cắt AC ở F. Chứng minh:
	a) Các tứ giác BDME, CFME, ADMF là các hình thang cân.
	b) Chu vi của tam giác DEF bằng tổng các khoảng cách từ M đến các đỉnh của tam giác ABC.
Ngày soạn: 16/9/2018
Tiết 6
§4. ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC
I. MỤC TIÊU
1. Kiến thức: Nắm được định nghĩa và các định lý về đường trung bình của tam giác.
2. Kỹ năng: Vận dụng các định lý về đường trung bình của tam giác để tính độ dài, chứng minh hai đoạn thẳng bằng nhau, hai đường thẳng song song. Rèn luyện cách lập luận chứng minh định lý và vận dụng các định lý đã học vào các bài toán thực tế.
- PTNL: Năng lực chứng minh, năng lực tính toán, năng lực sử dụng ngôn ngữ chặt chẽ, năng lực hợp tác, năng lực vận dụng linh hoạt các kiến thức vào thực tế...
3.Thái độ: Nghiêm túc, có ý thức trong học tập.
II. CHUẬN BỊ
1. Giáo viên: Compa, thước đo góc, thước thẳng, phấn màu.
2. Học sinh: Compa, thước kẻ, thước đo góc.
III. TIẾN TRÌNH BÀI DẠY
1. Tổ chức ổn định lớp: Kiểm tra sỉ số
2. Kiểm tra bài cũ. Yêu cầu HS vẽ , biết BC = 4cm, AB = 3cm, AC = 2cm.
3/ Bài mới: 
Hoạt động của giáo viên và học sinh 
Ghi bảng
Hoạt động 1: Định lí 1 
GV: Yêu cầu HS làm ?1.
- Dùng thước đo để kiểm tra lại dự đoán của em.
- Phát biểu dự đoán trên theo trường hợp tổng quát?
- Cả lớp làm ?1.
- HS trả lời ?1.
- HS phát biểu.
- HS khác nhận xét, bổ sung.
GV: Chốt lại và giới thiệu nội dung định lí 1.
- HS đọc nội dung định lí SGK.
GV: Vẽ hình, ghi GT, KL của định lý?
- HS lên bảng vẽ hình, ghi GT, KL của định lý.
GV: Hướng dẫn HS cách chứng minh.
- HS theo dõi.
GV: Chốt lại cách chứng minh, và yêu cầu HS xem trong SGK
1/ Định lí 1: (SGK/ 76)
GT
ABC, AD =DB
DE//BC (E AC)
KL
AE = EC
* Chứng minh: (SGK/76) 
Hoạt động 2: Định nghĩa 
GV: Treo bảng phụ Hình 35 và giới thiệu đường trung bình của tam giác.
- Nêu định nghĩa đường trung bình của tam giác?
- HS phát biểu định nghĩa đường trung bình của tam giác.- GV: Nêu cách vẽ đường TB của tam giác?
-Vẽ 2 trung điểm của 2 cạnh rồi nối lại.
GV: Trong một tam giác có mấy đường trung bình?
- Có 3 đường TB.
2/ Định nghĩa: (SGK/ 77)
DE là đường trung bình của ABC.
Hoạt động 2: Định lí 2
GV: Yêu cầu HS trả lời ?2.
- HS thực hành và làm ?2.
GV: Từ nội dung ?2 em hãy phát biểu thành định lý.
- HS phát biểu nội dung của định lý.
 GV: Vẽ hình, ghi GT, KL của định lý?
- HS lên bảng vẽ hình ghi GT, KL.
GV: Hướng dẫn HS cách chứng minh.
- HS cùng GV tìm cách chứng minh.
GV: Chốt lại cách chứng minh, và yêu cầu HS xem trong SGK
- HS theo dõi.
GV: Vậy đường trung bình của tam giác có tính chất gì?
- HS phát biểu.
GV: Yêu cầu HS làm ?3.
- HS làm ?3.
GV: Nhận xét, bổ sung.
2/ Định lí 2: (SGK/ 77)
GT
ABC, AD =BD, 
AE = EC
KL
DE//BC, 
Chứng minh: (SGK/ 77)
?3. Vì DE là đường TB của ABC nên: DE = 
 BC = 2DE.
 BC = 2.50 = 100 (cm).	
 4. Củng cố:
Hoạt động của giáo viên và học sinh
Ghi bảng
Bài 21/ 79 SGK:
GV: CD có quan hệ như thế nào với ?
- HS: CD là đường trung bình của .
GV: Khi đó ta có được điều gì?
- HS: 
GV: Từ đó hãy tính AB.
- HS thực hiện.
Bài 21/ 79 SGK:
Vì CD là đường trung bình của nên:
 5. Hướng dẫn về nhà:
 - Học và làm bài tập đầy đủ.
 - Cần nắm chắc nội dung định nghĩa, địng lý về đường trung bình của tam giác cũng như cách chứng minh các định lý đó.
 - BTVN: Bài 20, 22/ 79 – 80 SGK.
Ngày soạn: 25/9/2018
Tiết 7
§4. ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG
I. MỤC TIÊU
1. Kiến thức: HS nắm được định nghĩa đường trung bình của hình thang, hiểu và nắm chắc nội dung định lý 3, 4 .
2. Kỹ năng: Rèn kỹ năng lập luận trong chứng minh định lý, vận dụng định lý để tính độ dài các đọan thẳng, chứng minh hệ thức về đoạn thẳng. Áp dụng các kiến thức về đường trung bình của tam giác để chứng minh đường trung bình của hình thang, thấy được sự tương tự giữa định nghĩa và định lý về đường trung bình trong tam giác và hình thang.
- PTNL: Năng lực vẽ hình, năng lực chứng minh, năng lực tính toán..
3. Thái độ: Nghiêm túc, cẩn thận tư duy.	
II. CHUẬN BỊ
1. Giáo viên: Thước, eke, phấn màu, bảng phụ.
 2. Học sinh: Học bài, làm bài, SGK, đồ dùng học tập.
III. TIẾN TRÌNH BÀI DẠY
1. Tổ chức ổn định lớp: Kiểm tra sỉ số
2/ Kiểm tra bài cũ.
Hoạt động của giáo viên và học sinh
Ghi bảng
GV: Gọi 1HS làm bài 22/ SGK.
- HS lên bảng làm bài.
GV: Kiểm tra vở của một số HS.
- HS cả lớp xem lại bài làm ở nhà.
GV: Gọi HS khác nhận xét và phát biểu nội dung 2 định lí đã học.
- HS khác nhận xét và phát biểu định lí.
GV: Nhận xét và ghi điểm.
Bài 22/ 80 SGK:
Xét có: BE = ED và BM = MC
EM //DC DI //EM
Xét có: AD = DE và DI// EM
Nên: AI = IM
 3/ Bài mới:
Hoạt động của giáo viên và học sinh 
Ghi bảng
Hoạt động 1: Định lí 3 
GV: Yêu cầu HS làm ?4 .
- HS tìm hiểu ?4.
GV: Cho HS thảo luận theo nhóm. (Dùng thước để kiểm tra)
- HS thảo luận theo nhóm rồi cử đại diện lên bảng trình bày.
GV: Yêu cầu HS nhận xét, bổ sung. 
- Học sinh nhận xét, bổ sung. 
GV: Từ bài tập trên ta thấy nếu AE = ED và EF // DC thì F là trung điểm của BC.
- 1HS phát biểu, các HS khác nhận xét, bổ sung.
GV: Hãy phát biểu ?4 thành dạng tổng quát?
GV: Yêu cầu HS tìm hiểu định lý 3.
-Hs tìm hiểu định lý 3.
 GV: Hãy vẽ hình, ghi GT, KL của định lý.
- HS lên bảng ghi GT, KL của định lý.
GV: Trở lại ?4 và hướng dẫn HS cách chứng minh.
-Gợi ý: 
+ So sánh IA và IC?
+ So sánh BF với FC?
GV: Gọi HS lên bảng chứng minh. 
- HS lên bảng chứng minh. HS cả lớp cùng làm bài .
GV: Yêu cầu HS nhận xét, bổ sung. 
- HS nhận xét, bổ sung. 
GV: Chốt bài.
1/ Định lí 3: (SGK/ 78)
GT
ABCD là hình thang 
(AB // CD), AE = ED
EF // AB, EF // CD
KL
BF = FC
* Chứng minh: (SGK/ 78)
Hoạt động 2: Định nghĩa
GV: Giới thiệu: EF là đường trung bình của hình thang. Vậy thế nào là đường trung bình của hình thang?
- HS phát biểu định nghĩa đường trung bình của hình thang.
GV: Nêu cách vẽ đường trung bình?
- HS: Xác định 2 trung điểm của 2 cạnh bên và nối lại với nhau.
2/ Định nghĩa: (SGK/ 78)
Hoạt động 3: Định lí 4 
GV: Nêu định lý 4.
- HS chú ý theo dõi và nhắc lại.
GV: Hãy vẽ hình, ghi GT và KL của định lý.
- HS ghi GT và KL.
GV: Cùng HS chứng minh định lý này.
- HS cùng GV chứng minh định lý 4 (HS làm theo hướng dẫn của GV).
GV: Để chứng minh EF//CD ta tạo ra một tam giác có E và F là trung điểm của hai cạnh và DC nằm trên cạnh thứ 3.
So sánh AF với FK? So sánh EF và DK?
 - HS suy nghĩ cách chứng minh và phát biểu.
Từ đó có nhận xét gì về EF và AB + CD?
- HS: EF = 
GV: Chốt kiến thức sau khi chứng minh định lý.
- HS cả lớp xem lại cách chứng minh ở SGK.
GV: Treo bảng phụ ?5 và yêu cầu HS tự làm.
- HS trả lời ?5. GV: Chốt lại bài.
3/ Định lý 4: (SGK/ 78)
GT
ABCD là hình thang (AB//CD), AE = ED
BF = FC.
KL
AF // AB, EF // CD, 
EF =
* Chứng minh: (SGK/ 79)
 4/ Củng cố:
Hoạt động của giáo viên và học sinh 
Ghi bảng
Bài 23/ 80 SGK: 
GV: Treo bảng phụ hình 44 lên bảng.
GV: Điểm K có mối liên hệ gì với PQ? Vì sao?
- HS quan sát hình 44 và suy nghĩ làm bài.
GV: So sánh MI với IN?
- HS trình bày. HS khác nhận xét.
GV: Chốt lại.
Bài 23/ 80 SGK: 
Ta có: IN= IM ( gt)
I là trung điểm của MN
IK // NQ// MP ( vì cùng vuông góc với PQ)
IK là đường trung bình của hình thang.
PK =KQ ( định lí 1)
x = PK = 5 (dm )
 5/ Hướng dẫn về nhà: 
 - Học thuộc định nghĩa, các định lí về đường trung bình của tam giác, của hình thang.
 - So sánh định lí 1,3 và định lí 2, 4.
 - Làm bài tập 24, 25/ SGK và chuẩn bị bài tập phần luyện tập.
 * Hướng dẫn: Bài 25/ 80 SGK: Ba điểm đó cùng nằm trên đường trung bình của hình thang E,K,F thẳng hàng.
Ngày soạn: 26/9/2018
Tiết 8
LUYỆN TẬP
I . MỤC TIÊU
1. Kiến thức: Thông qua thực hành luyện tập HS được củng cố và khắc sâu các kiến thức về đường trung bình của tam giác và hình thang.
2. Kỹ năng: Rèn kỹ năng vận dụng kiến thức đã học vào chứng minh hình học (kiến thức về đường trung bình của tam giác và hình thang). Rèn tư duy lôgíc, khả năng phân tích, tổng hợp và tính lập luận chặt chẽ trong chứng minh hình học.
- PTNL: Năng lực tính toán, năng lực chứng minh, năng lực hợp tác, năng lực hoạt động nhóm...
3. Thái độ: Cẩn thận, tự giác trong học tập.
II. CHUẬN BỊ
1. Giáo viên: Thước thẳng, phấn màu, bảng phụ.
2. Học sinh: Thước thẳng, các kiến thức về đường TB của tam giác và hình thang đã học.
III. TIẾN TRÌNH BÀI DẠY
1.Tổ chức ổn định lớp: Kiểm tra sỉ số
2.Kiểm tra bài cũ: Kết hợp trong bài dạy
3.Bài mới: 
Hoạt động của giáo viên và học sinh 
Ghi bảng
Bài 26/ 80 SGK:
GV: Gọi HS nêu cách làm.
- HS suy nghĩ, nêu cách làm. 
GV: Cho cả lớp làm tại chỗ, một em làm ở bảng.
- Một HS làm ở bảng, còn lại làm cá nhân tại chỗ.
GV: Cho cả lớp nhận xét bài giải ở bảng. 
- HS lớp nhận xét, góp ý bài giải ở bảng.
Bài 25/ 80 SGK:
GV: Gọi HS đọc đề.
- HS đọc lại đề bài. 
GV: Cho một HS trình bày giải. 
- Một HS lên bảng trình bày.
GV: Cho HS nhận xét cách làm của bạn, sửa chỗ sai nếu có.
- Cả lớp theo dõi, nhận xét, góp ý sửa sai 
GV: Nói nhanh lại cách làm như lời giải 
- HS tự sửa sai vào vở.
Bài 26/ 80 SGK:
Hình thang ABFE có CD là đường trung bình nên:
Hay: x = 12(cm)
Hình thang CDHG có EF là đường trung bình nên:
Hay: y = 20(cm)
Bài 25/ 80 SGK:
Vì EK là đường trung bình của rABD nên EK //AB (1)
Tương tự ta có: KF // CD (2)
Mà AB // CD (3)
Từ (1), (2), (3) EK//AB, KF//CD
Do đó: E, K, F thẳng hàng.
 4. Củng cố: GV uốn nắn, chỉ lại một lần, chốt kiến thức toàn bài.
 5. Kiểm tra 15 phút
Đề
Câu 1: ( 5 điểm) Trên hình có bao nhiêu hình thang, kể tên các hình thang đó
Câu 2: ( 5 điểm) Cho tam giác ABC, trung tuyến AM. Gọi I là trung điểm của AM, D là giao điểm của BI và AC.
Chứng minh: .
( Hướng dẫn: Qua M kẻ MN//BD)
Đáp án
Câu 1: Trên hình có 6 hình thang
Câu 2: Xét , có IA=IM, ID//MN
=> DA=DN (1)
có MB=MC, MN//DB
=> NC=ND (2)
Từ (1); (2) => AD=DC
Ngày soạn: 1/10/2018
Tiết 9
§6. ĐỐI XỨNG TRỤC
I. MỤC TIÊU:
1. Kiến thức: HS nắm vững định nghĩa 2 điểm đối xứng với nhau qua 1 đt, hiểu được đ/n về 2 đường đối xứng với nhau qua 1 đt, hiểu được đ/n về hình có trục đối xứng.
2. Kỹ năng: HS biết về điểm đối xứng với 1 điểm cho trước. Vẽ đoạn thẳng đối xứng với đoạn thẳng cho trước qua 1 đt. Biết CM 2 điểm đối xứng nhau qua 1 đường thẳng.
- PTNL: Năng lực tính toán, năng lực vẽ hình, năng lực quan sát, năng lực hợp tác..
3. Thái độ: HS nhận ra 1 số hình trong thực tế là hình có trục đối xứng. Biết áp dụng tính đối xứng của trục vào việc vẽ hình gấp hình.
II. CHUẨN BỊ: 
+ GV: Giấy kẻ ô, bảng phụ. + HS: Tìm hiểu về đường trung trực tam giác.
III. TIẾN TRÌNH BÀI DẠY. A
1. Ôn định tổ chức: Kiểm tra sỉ số
2. Kiểm tra bài cũ:(Trang)
- Thế nào là đường trung trực của tam giác? 
với cân hoặc đều đường trung trực có đặc điểm gì? 
( vẽ hình trong trường hợp cân hoặc đều) B D C
3. Bài mới:
Hoạt động của giáo viên và học sinh
Ghi bảng
* HĐ1: Hình thành định nghĩa 2 điểm đối xứng nhau qua 1 đường thẳng.
+ GV cho HS làm bài tập
Cho đt d và 1 điểm Ad. Hãy vẽ điểm A' sao cho d là đường trung trực của đoạn thẳng AA'
+ Muốn vẽ được A' đối xứng với điểm A qua d ta vẽ ntn?
- HS lên bảng vẽ điểm A' đx với điểm A qua đường thẳng d
- HS còn lại vẽ vào vở.
+ Em hãy định nghĩa 2 điểm đối xứng nhau?
* HĐ2: Hình thành định nghĩa 2 hình đối xứng nhau qua 1 đường thẳng
- GV: Ta đã biết 2 điểm A và A' gọi là đối xứng nhau qua đường thẳng d nếu d là đường trung trực đoạn AA'. Vậy khi nào 2 hình H & H' được gọi 2 hình đối xứng nhau qua đt d? Làm BT sau
Cho đt d và đoạn thẳng AB
 - Vẽ A' đối xứng với điểm A qua d
 - Vẽ B' đối xứng với điểm B qua d
Lấy CAB. Vẽ điểm C' đx với C qua d
- HS vẽ các điểm A', B', C' và kiểm nghiệm trên bảng.
- HS còn lại thực hành tại chỗ
+ Dùng thước để kiểm nghiệm điểm C'A'B'
+ Gv chốt lại: Người ta CM được rằng : Nếu A' đối xứng với A qua đt d, B' đx với B qua đt d; thì mỗi điểm trên đoạn thẳng AB có điểm đối xứng với nó qua đt d. là 1 điểm thuộc đoạn thẳng A'B' và ngược lại mỗi điểm trên đt A'B' có điểm đối xứng với nó qua đường thẳng d là 1 điểm thuộc đoạn AB.
- Về dựng 1 đoạn thẳng A'B' đối xứng với đoạn thẳng AB cho trước qua đt d cho trước ta chỉ cần dựng 2 điểm A'B' đx với nhau qua đầu mút A,B qua d rồi vẽ đoạn A'B' Ta có đ/n về hình đối xứng ntn?
+ GV đưa bảng phụ.
- Hãy chỉ rõ trên hình vẽ sau: Các cặp đoạn thẳng, đt đối xứng nhau qua đt d & giải thích (H53).
+ GV chốt lại
+ A&A', B&B', C&C' Là các cặp đối xứng nhau qua đt d do đó ta có:
Hai đoạn thẳng : AB &A'B' đx với nhau qua d
- BC &B'C' đx với nhau qua d 
- AC &A'C ' đx với nhau qua d 
- 2 góc ABC&A'B'C' đx với nhau qua d 
- ABC&A'B'C' đx với nhau qua d 
- 2 đường thẳng ACA'C' đx với nhau qua d 
+ Hình H& H' đối xứng với nhau qua trục d
* HĐ3: Hình thành định nghĩa hình có trục đối xứng
Cho ABC cân tại A đường cao AH. Tìmhình đối xứng với mỗi cạnh của ABC qua AH.
+ GV: Hình đx của cạnh AB là hình nào?
- Hình đx của cạnh AC là hình nào ?
- Hình đx của cạnh BC là hình nào ?
	Có đ/n thế nào là 2 hình đối xứng nhau?
HĐ4: Bài tập áp dụng
+ GV đưa ra bt bằng bảng phụ.
 Mỗi hình sau đây có bao nhiêu trục đối xứng.
+Gv: Đưa tranh vẽ hình thang cân
- Hình thang có trục đối xứng không? Là hình thang nào? và trục đối xứng là đường nào?
1) Hai điểm đối xứng nhau qua 1 đường thẳng
 ?1 . A
 d 
 A 
 B d
	 H
 A' 
* Định nghĩa: Hai điểm gọi là đối xứng với nhau qua đt d nếu d là đường trung trực của đoạn thẳng nối 2 điểm đó.
Quy ước: Nếu điểm B nằm trên đt d thì điểm đối xứng với B qua đt d cũng là điểm B
2) Hai hình đối xứng nhau qua 1 đường thẳng
?2 
 B
 A 
 d 
 C B
 A x = 
 - 
 - x d
 A' = 
 C' B' 
- 

Tài liệu đính kèm:

  • docgiao_an_hinh_hoc_lop_8_hoc_ki_i_nam_hoc_2018_2019_hoang_thi.doc