Đề thi chọn học sinh giỏi Toán Lớp 8 - Năm học 2014-2015 - Phòng GD & ĐT Huyện Vĩnh Lộc

Đề thi chọn học sinh giỏi Toán Lớp 8 - Năm học 2014-2015 - Phòng GD & ĐT Huyện Vĩnh Lộc

Bài 3 ( 4,0 điểm ):

 a). Cho x,y,z là các số nguyên thỏa mãn: x + y + z chia hết cho 6

Chứng minh M = ( x + y)( x + z )( y + z ) – 2xyz chia hết cho 6

 b). Cho a,b,c là các số khác 0 thỏa mãn:

Tính giá trị biểu thức

Bài 4 (6,0 điểm).

Cho tam giác nhọn ABC ( AB < ac),="" có="" đường="" cao="" ah="" sao="" cho="" ah="HC." trên="" ah="" lấy="" một="" điểm="" i="" sao="" cho="" hi="BH." gọi="" p="" và="" q="" là="" trung="" điểm="" của="" bi="" và="" ac.="" gọi="" n="" và="" m="" là="" hình="" chiếu="" của="" h="" trên="" ab="" và="" ic="" ;="" k="" là="" giao="" điểm="" của="" đường="" thẳng="" ci="" với="" ab="" ;="" d="" là="" giao="" điểm="" của="" đường="" thẳng="" bi="" với="">

a). Chứng minh I là trực tâm của tam giác ABC

b). Tứ giác HNKM là hình vuông

c). Chứng minh bốn điểm N, P, M, Q thẳng hàng.

 

docx 5 trang thuongle 4120
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi Toán Lớp 8 - Năm học 2014-2015 - Phòng GD & ĐT Huyện Vĩnh Lộc", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 UBND HUYỆN VĨNH LỘC
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO 
KỲ GIAO LƯU HỌC SINH GIỎI LỚP 6, 7, 8 CỤM THCS 
ĐỀ CHÍNH THỨC
Năm học 2014 – 2015
ĐỀ GIAO LƯU MÔN: TOÁN LỚP 8
Thời gian làm bài: 150 phút ( Không kể thời gian giao đề )
( Đề giao lưu gồm có 01 trang )
Bài 1 (4,0 điểm):
Cho biểu thức A = với x khác -1 và 1.
1) Rút gọn biểu thức A.
2) Tính giá trị của biểu thức A tại x .
3) Tìm giá trị của x để A < 0.
Bài 2 ( 4,0 điểm ): 
 a)Giải phương trình sau: 
 b) Cho x là số nguyên. Chứng minh rằng biểu thức 
 M= (x+1)(x+2)(x+3)(x+4) +1 là bình phương của một số nguyên
Bài 3 ( 4,0 điểm ):
 a). Cho x,y,z là các số nguyên thỏa mãn: x + y + z chia hết cho 6
Chứng minh M = ( x + y)( x + z )( y + z ) – 2xyz chia hết cho 6
 b). Cho a,b,c là các số khác 0 thỏa mãn: 
Tính giá trị biểu thức 
Bài 4 (6,0 điểm).
Cho tam giác nhọn ABC ( AB < AC), có đường cao AH sao cho AH = HC. Trên AH lấy một điểm I sao cho HI = BH. Gọi P và Q là trung điểm của BI và AC. Gọi N và M là hình chiếu của H trên AB và IC ; K là giao điểm của đường thẳng CI với AB ; D là giao điểm của đường thẳng BI với AC.
a). Chứng minh I là trực tâm của tam giác ABC
b). Tứ giác HNKM là hình vuông
c). Chứng minh bốn điểm N, P, M, Q thẳng hàng.
Bài 5 ( 2,0 điểm ): 
 Cho x,y,z là các số dương thỏa mãn điều kiện: 
Tìm giá trị lớn nhất của biểu thức: 
- Họ và tên thí sinh: ..; Số báo danh:
Chú ý: Cán bộ coi thi không được giải thích gì thêm.
 UBND HUYỆN VĨNH LỘC
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO 
KỲ GIAO LƯU HỌC SINH GIỎI LỚP 6, 7, 8 CẤP HUYỆN 
Năm học 2014 – 2015
HƯỚNG DẪN CHẤM MÔN: TOÁN LỚP 8
( Gồm có 04 trang )
I. Một số chú ý.
1. Tổng số điểm của 5 bài trong đề thi là 20 điểm. 
2. Không được làm tròn điểm của từng bài và tổng điểm đạt được của thí sinh.
3. Thí sinh có thể giải bằng các cách khác với lời giải trong hướng dẫn chấm, nếu lời giải đúng, đủ bước thì người chấm vẫn có thể cho điểm tối đa theo biểu điểm quy định cho từng câu.
II. Đáp án, biểu điểm và hướng dẫn chấm. 
Bài
Câu
Yêu cầu cần đạt và lời giải tóm tắt
Mức điểm
1
(4,0 điểm
1.1
(2,0 điểm
Với x khác -1 và 1 thì :
 A= 
=
 = 
 = 
0,5đ
0,5đ
0,5đ
0,5đ
1.2
(1,0 điểm)
Tại x = = thì A = 
= 
0,25đ
0,25đ
0,5đ
1.3
(1,0 điểm)
Với x khác -1 và 1 thì A < 0 khi và chỉ khi 
 (1)
Vì với mọi x nên (1) xảy ra khi và chỉ khi 
KL
0,25đ
0,5đ
0,25đ
2
(4,0 điểm)
2.a
(2,0
điểm)
 Đặt t = x2 -2x + 3 = ( x-1)2 +2. 
 Với 
Phương trình đã cho trở thành:
Kết hợp với ĐK ta được t = 2
Do đó ta có: ( x-1)2 +2 =2
 ( x-1)2 = 0. . 
 x = 1
Vậy phương trình có nghiệm duy nhất x = 1
0,25đ
0,25đ
0,5đ
0,5đ
0,25đ
0,25đ
2.b
(2,0
điểm)
Ta có: M= (x+1)(x+2)(x+3)(x+4) +1 
 = (x2 + 5x + 4)(x2 + 5x + 6) + 1
Đặt t = x2 + 5x + 5 
Khi đó M = (t – 1)(t + 1) +1
 = t2 – 1 + 1 = t2
Vì x là số nguyên nên t là số nguyên. 
Vậy M là bình phương của một số nguyên
0,25đ
0,25đ
0,5đ
0,5đ
0,25đ
0,25đ
3
(4,0
điểm)
(2,0
điểm)
2,0
điểm
a). 
 Ta có: M = ( x + y)( x + z )( y + z ) – 2xyz 
Học sinh biến đổi được
 M = ( x +y +z ) ( xy +yz + zx) – 3 xyz
Vì x,y,z là các số nguyên thỏa mãn x + y + z chia hết cho 6 Nên ( x +y +z ) ( xy +yz + zx) chia hết cho 6 
Trong 3 số x,y,z tồn tại ít nhất một số chia hết cho 2. Suy ra 3xyz chia hết cho 6
Do đó: ( x +y +z ) ( xy +yz + zx) – 3 xyz chia hết cho 6
Vậy: M chia hết cho 6 
Đặt ab =x; bc = y; ca = z
Ta có: x3 + y3 +z3= 3xyz
- Học sinh chứng minh : x+y+z = 0 
hoặc x2+y2+z2-xy-yz-zx = 0
- TH1: x+y+z = 0
HS sử dụng hằng đẳng thức :
 ( x+y+z)3 – x3- y3- z3 = 3 (x+y)(y+z)(z+x)
=> -xyz = (x+y)(y+z)(z+x)
Ta có: -a2b2c2=(ab+bc)(bc+ca)(ca+ab)
 -abc = (a+b)(b+c)(c+a)
=> 
-TH2: x2+y2+z2-xy-yz-zx = 0
=> ( x-y)2 + (y-z)2 + (z-x)2 = 0
=> x=y=z
=> ab=bc=ca
=>a=b=c
P=8
 KL: 
0,75đ
0,25đ
0,5đ
0,25đ
0,25đ
0,25đ
0,5đ
0,25đ
0,5đ
0,5đ
4
(6,0
điểm)
4.a.
(2,0 điểm)
Xét tam giác BHI có: BH = HI ; 
Tam giác BHI vuông cân tại H.=>
Tam giác AHC có AH = HC; 
Tam giác AHC vuông cân tại H => 
Suy ra tam giác BCD vuông cân tại D
Tam giác ABC có 2 đường cao AH, BD.
Vậy I là trực tâm của tam giác ABC
0,5đ
0,5đ
0,25đ
0,5đ
0,25đ
4.b.
(2,0 điểm)
- Xét tứ giác HMKN có: 
. ( CK là đường cao).
Tứ giác HMKN là hình chữ nhật. (1)
Xét tam giác MIH và tam giác NBH có:
Suy ra
=> HM = HN (2)
Từ (1) và (2): Tứ giác HMKN là hình vuông
0,25đ
0,25đ
0,25đ
0,5đ
0,25đ
0,25đ
0,25đ
4.c
(2,0 điểm)
- Theo câu b: Tứ giác HMKN là hình vuông nên M, N thuộc trung trực của đoạn thẳng KH
- Xét 2 tam giác vuông AHC và AKC; trung tuyếnHQ,KQ. Ta có: HQ = ½ AC; KQ = ½ AC; Suy ra Q thuộc trung trực KH
- Hoàn toàn tương tự ta cũng có P thuộc trung trực KH
Vậy 4 điểm M,N,P,Q thẳng hàng
0,5đ
1,0 đ
0,5 đ
5
(2,0 điểm)
- Áp dụng bất đẳng thức cô si cho 2015 số dương
 x2015; x2015; 1;1;1;......;1;1 ta được
 x2015+x2015+1+1+1+......+1+1
2x2015+2013
 Hoàn toàn tương tự ta cũng có:
2y2015+2013
2z2015+2013
=>
Dấu “=” xảy ra khi x=y=z=1
Vậy x2 + y2 + z2 đạt giá trị lớn nhất là 3 tại x = y = z =1
1,0đ
0,5đ
0,5đ

Tài liệu đính kèm:

  • docxde_thi_chon_hoc_sinh_gioi_toan_lop_8_nam_hoc_2014_2015_phong.docx